New comit of SDL2
[supertux.git] / src / SDL2 / external / tiff-4.0.3 / libtiff / tif_getimage.c
1 /* $Id: tif_getimage.c,v 1.82 2012-06-06 00:17:49 fwarmerdam Exp $ */
2
3 /*
4  * Copyright (c) 1991-1997 Sam Leffler
5  * Copyright (c) 1991-1997 Silicon Graphics, Inc.
6  *
7  * Permission to use, copy, modify, distribute, and sell this software and 
8  * its documentation for any purpose is hereby granted without fee, provided
9  * that (i) the above copyright notices and this permission notice appear in
10  * all copies of the software and related documentation, and (ii) the names of
11  * Sam Leffler and Silicon Graphics may not be used in any advertising or
12  * publicity relating to the software without the specific, prior written
13  * permission of Sam Leffler and Silicon Graphics.
14  * 
15  * THE SOFTWARE IS PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, 
16  * EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIMITATION, ANY 
17  * WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.  
18  * 
19  * IN NO EVENT SHALL SAM LEFFLER OR SILICON GRAPHICS BE LIABLE FOR
20  * ANY SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY KIND,
21  * OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
22  * WHETHER OR NOT ADVISED OF THE POSSIBILITY OF DAMAGE, AND ON ANY THEORY OF 
23  * LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE 
24  * OF THIS SOFTWARE.
25  */
26
27 /*
28  * TIFF Library
29  *
30  * Read and return a packed RGBA image.
31  */
32 #include "tiffiop.h"
33 #include <stdio.h>
34
35 static int gtTileContig(TIFFRGBAImage*, uint32*, uint32, uint32);
36 static int gtTileSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
37 static int gtStripContig(TIFFRGBAImage*, uint32*, uint32, uint32);
38 static int gtStripSeparate(TIFFRGBAImage*, uint32*, uint32, uint32);
39 static int PickContigCase(TIFFRGBAImage*);
40 static int PickSeparateCase(TIFFRGBAImage*);
41
42 static int BuildMapUaToAa(TIFFRGBAImage* img);
43 static int BuildMapBitdepth16To8(TIFFRGBAImage* img);
44
45 static const char photoTag[] = "PhotometricInterpretation";
46
47 /* 
48  * Helper constants used in Orientation tag handling
49  */
50 #define FLIP_VERTICALLY 0x01
51 #define FLIP_HORIZONTALLY 0x02
52
53 /*
54  * Color conversion constants. We will define display types here.
55  */
56
57 static const TIFFDisplay display_sRGB = {
58         {                       /* XYZ -> luminance matrix */
59                 {  3.2410F, -1.5374F, -0.4986F },
60                 {  -0.9692F, 1.8760F, 0.0416F },
61                 {  0.0556F, -0.2040F, 1.0570F }
62         },      
63         100.0F, 100.0F, 100.0F, /* Light o/p for reference white */
64         255, 255, 255,          /* Pixel values for ref. white */
65         1.0F, 1.0F, 1.0F,       /* Residual light o/p for black pixel */
66         2.4F, 2.4F, 2.4F,       /* Gamma values for the three guns */
67 };
68
69 /*
70  * Check the image to see if TIFFReadRGBAImage can deal with it.
71  * 1/0 is returned according to whether or not the image can
72  * be handled.  If 0 is returned, emsg contains the reason
73  * why it is being rejected.
74  */
75 int
76 TIFFRGBAImageOK(TIFF* tif, char emsg[1024])
77 {
78         TIFFDirectory* td = &tif->tif_dir;
79         uint16 photometric;
80         int colorchannels;
81
82         if (!tif->tif_decodestatus) {
83                 sprintf(emsg, "Sorry, requested compression method is not configured");
84                 return (0);
85         }
86         switch (td->td_bitspersample) {
87                 case 1:
88                 case 2:
89                 case 4:
90                 case 8:
91                 case 16:
92                         break;
93                 default:
94                         sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
95                             td->td_bitspersample);
96                         return (0);
97         }
98         colorchannels = td->td_samplesperpixel - td->td_extrasamples;
99         if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &photometric)) {
100                 switch (colorchannels) {
101                         case 1:
102                                 photometric = PHOTOMETRIC_MINISBLACK;
103                                 break;
104                         case 3:
105                                 photometric = PHOTOMETRIC_RGB;
106                                 break;
107                         default:
108                                 sprintf(emsg, "Missing needed %s tag", photoTag);
109                                 return (0);
110                 }
111         }
112         switch (photometric) {
113                 case PHOTOMETRIC_MINISWHITE:
114                 case PHOTOMETRIC_MINISBLACK:
115                 case PHOTOMETRIC_PALETTE:
116                         if (td->td_planarconfig == PLANARCONFIG_CONTIG
117                             && td->td_samplesperpixel != 1
118                             && td->td_bitspersample < 8 ) {
119                                 sprintf(emsg,
120                                     "Sorry, can not handle contiguous data with %s=%d, "
121                                     "and %s=%d and Bits/Sample=%d",
122                                     photoTag, photometric,
123                                     "Samples/pixel", td->td_samplesperpixel,
124                                     td->td_bitspersample);
125                                 return (0);
126                         }
127                         /*
128                          * We should likely validate that any extra samples are either
129                          * to be ignored, or are alpha, and if alpha we should try to use
130                          * them.  But for now we won't bother with this.
131                         */
132                         break;
133                 case PHOTOMETRIC_YCBCR:
134                         /*
135                          * TODO: if at all meaningful and useful, make more complete
136                          * support check here, or better still, refactor to let supporting
137                          * code decide whether there is support and what meaningfull
138                          * error to return
139                          */
140                         break;
141                 case PHOTOMETRIC_RGB:
142                         if (colorchannels < 3) {
143                                 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
144                                     "Color channels", colorchannels);
145                                 return (0);
146                         }
147                         break;
148                 case PHOTOMETRIC_SEPARATED:
149                         {
150                                 uint16 inkset;
151                                 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
152                                 if (inkset != INKSET_CMYK) {
153                                         sprintf(emsg,
154                                             "Sorry, can not handle separated image with %s=%d",
155                                             "InkSet", inkset);
156                                         return 0;
157                                 }
158                                 if (td->td_samplesperpixel < 4) {
159                                         sprintf(emsg,
160                                             "Sorry, can not handle separated image with %s=%d",
161                                             "Samples/pixel", td->td_samplesperpixel);
162                                         return 0;
163                                 }
164                                 break;
165                         }
166                 case PHOTOMETRIC_LOGL:
167                         if (td->td_compression != COMPRESSION_SGILOG) {
168                                 sprintf(emsg, "Sorry, LogL data must have %s=%d",
169                                     "Compression", COMPRESSION_SGILOG);
170                                 return (0);
171                         }
172                         break;
173                 case PHOTOMETRIC_LOGLUV:
174                         if (td->td_compression != COMPRESSION_SGILOG &&
175                             td->td_compression != COMPRESSION_SGILOG24) {
176                                 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
177                                     "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
178                                 return (0);
179                         }
180                         if (td->td_planarconfig != PLANARCONFIG_CONTIG) {
181                                 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
182                                     "Planarconfiguration", td->td_planarconfig);
183                                 return (0);
184                         }
185                         break;
186                 case PHOTOMETRIC_CIELAB:
187                         break;
188                 default:
189                         sprintf(emsg, "Sorry, can not handle image with %s=%d",
190                             photoTag, photometric);
191                         return (0);
192         }
193         return (1);
194 }
195
196 void
197 TIFFRGBAImageEnd(TIFFRGBAImage* img)
198 {
199         if (img->Map)
200                 _TIFFfree(img->Map), img->Map = NULL;
201         if (img->BWmap)
202                 _TIFFfree(img->BWmap), img->BWmap = NULL;
203         if (img->PALmap)
204                 _TIFFfree(img->PALmap), img->PALmap = NULL;
205         if (img->ycbcr)
206                 _TIFFfree(img->ycbcr), img->ycbcr = NULL;
207         if (img->cielab)
208                 _TIFFfree(img->cielab), img->cielab = NULL;
209         if (img->UaToAa)
210                 _TIFFfree(img->UaToAa), img->UaToAa = NULL;
211         if (img->Bitdepth16To8)
212                 _TIFFfree(img->Bitdepth16To8), img->Bitdepth16To8 = NULL;
213
214         if( img->redcmap ) {
215                 _TIFFfree( img->redcmap );
216                 _TIFFfree( img->greencmap );
217                 _TIFFfree( img->bluecmap );
218                 img->redcmap = img->greencmap = img->bluecmap = NULL;
219         }
220 }
221
222 static int
223 isCCITTCompression(TIFF* tif)
224 {
225     uint16 compress;
226     TIFFGetField(tif, TIFFTAG_COMPRESSION, &compress);
227     return (compress == COMPRESSION_CCITTFAX3 ||
228             compress == COMPRESSION_CCITTFAX4 ||
229             compress == COMPRESSION_CCITTRLE ||
230             compress == COMPRESSION_CCITTRLEW);
231 }
232
233 int
234 TIFFRGBAImageBegin(TIFFRGBAImage* img, TIFF* tif, int stop, char emsg[1024])
235 {
236         uint16* sampleinfo;
237         uint16 extrasamples;
238         uint16 planarconfig;
239         uint16 compress;
240         int colorchannels;
241         uint16 *red_orig, *green_orig, *blue_orig;
242         int n_color;
243
244         /* Initialize to normal values */
245         img->row_offset = 0;
246         img->col_offset = 0;
247         img->redcmap = NULL;
248         img->greencmap = NULL;
249         img->bluecmap = NULL;
250         img->req_orientation = ORIENTATION_BOTLEFT;     /* It is the default */
251
252         img->tif = tif;
253         img->stoponerr = stop;
254         TIFFGetFieldDefaulted(tif, TIFFTAG_BITSPERSAMPLE, &img->bitspersample);
255         switch (img->bitspersample) {
256                 case 1:
257                 case 2:
258                 case 4:
259                 case 8:
260                 case 16:
261                         break;
262                 default:
263                         sprintf(emsg, "Sorry, can not handle images with %d-bit samples",
264                             img->bitspersample);
265                         goto fail_return;
266         }
267         img->alpha = 0;
268         TIFFGetFieldDefaulted(tif, TIFFTAG_SAMPLESPERPIXEL, &img->samplesperpixel);
269         TIFFGetFieldDefaulted(tif, TIFFTAG_EXTRASAMPLES,
270             &extrasamples, &sampleinfo);
271         if (extrasamples >= 1)
272         {
273                 switch (sampleinfo[0]) {
274                         case EXTRASAMPLE_UNSPECIFIED:          /* Workaround for some images without */
275                                 if (img->samplesperpixel > 3)  /* correct info about alpha channel */
276                                         img->alpha = EXTRASAMPLE_ASSOCALPHA;
277                                 break;
278                         case EXTRASAMPLE_ASSOCALPHA:           /* data is pre-multiplied */
279                         case EXTRASAMPLE_UNASSALPHA:           /* data is not pre-multiplied */
280                                 img->alpha = sampleinfo[0];
281                                 break;
282                 }
283         }
284
285 #ifdef DEFAULT_EXTRASAMPLE_AS_ALPHA
286         if( !TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric))
287                 img->photometric = PHOTOMETRIC_MINISWHITE;
288
289         if( extrasamples == 0
290             && img->samplesperpixel == 4
291             && img->photometric == PHOTOMETRIC_RGB )
292         {
293                 img->alpha = EXTRASAMPLE_ASSOCALPHA;
294                 extrasamples = 1;
295         }
296 #endif
297
298         colorchannels = img->samplesperpixel - extrasamples;
299         TIFFGetFieldDefaulted(tif, TIFFTAG_COMPRESSION, &compress);
300         TIFFGetFieldDefaulted(tif, TIFFTAG_PLANARCONFIG, &planarconfig);
301         if (!TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &img->photometric)) {
302                 switch (colorchannels) {
303                         case 1:
304                                 if (isCCITTCompression(tif))
305                                         img->photometric = PHOTOMETRIC_MINISWHITE;
306                                 else
307                                         img->photometric = PHOTOMETRIC_MINISBLACK;
308                                 break;
309                         case 3:
310                                 img->photometric = PHOTOMETRIC_RGB;
311                                 break;
312                         default:
313                                 sprintf(emsg, "Missing needed %s tag", photoTag);
314                                 goto fail_return;
315                 }
316         }
317         switch (img->photometric) {
318                 case PHOTOMETRIC_PALETTE:
319                         if (!TIFFGetField(tif, TIFFTAG_COLORMAP,
320                             &red_orig, &green_orig, &blue_orig)) {
321                                 sprintf(emsg, "Missing required \"Colormap\" tag");
322                                 goto fail_return;
323                         }
324
325                         /* copy the colormaps so we can modify them */
326                         n_color = (1L << img->bitspersample);
327                         img->redcmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
328                         img->greencmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
329                         img->bluecmap = (uint16 *) _TIFFmalloc(sizeof(uint16)*n_color);
330                         if( !img->redcmap || !img->greencmap || !img->bluecmap ) {
331                                 sprintf(emsg, "Out of memory for colormap copy");
332                                 goto fail_return;
333                         }
334
335                         _TIFFmemcpy( img->redcmap, red_orig, n_color * 2 );
336                         _TIFFmemcpy( img->greencmap, green_orig, n_color * 2 );
337                         _TIFFmemcpy( img->bluecmap, blue_orig, n_color * 2 );
338
339                         /* fall thru... */
340                 case PHOTOMETRIC_MINISWHITE:
341                 case PHOTOMETRIC_MINISBLACK:
342                         if (planarconfig == PLANARCONFIG_CONTIG
343                             && img->samplesperpixel != 1
344                             && img->bitspersample < 8 ) {
345                                 sprintf(emsg,
346                                     "Sorry, can not handle contiguous data with %s=%d, "
347                                     "and %s=%d and Bits/Sample=%d",
348                                     photoTag, img->photometric,
349                                     "Samples/pixel", img->samplesperpixel,
350                                     img->bitspersample);
351                                 goto fail_return;
352                         }
353                         break;
354                 case PHOTOMETRIC_YCBCR:
355                         /* It would probably be nice to have a reality check here. */
356                         if (planarconfig == PLANARCONFIG_CONTIG)
357                                 /* can rely on libjpeg to convert to RGB */
358                                 /* XXX should restore current state on exit */
359                                 switch (compress) {
360                                         case COMPRESSION_JPEG:
361                                                 /*
362                                                  * TODO: when complete tests verify complete desubsampling
363                                                  * and YCbCr handling, remove use of TIFFTAG_JPEGCOLORMODE in
364                                                  * favor of tif_getimage.c native handling
365                                                  */
366                                                 TIFFSetField(tif, TIFFTAG_JPEGCOLORMODE, JPEGCOLORMODE_RGB);
367                                                 img->photometric = PHOTOMETRIC_RGB;
368                                                 break;
369                                         default:
370                                                 /* do nothing */;
371                                                 break;
372                                 }
373                         /*
374                          * TODO: if at all meaningful and useful, make more complete
375                          * support check here, or better still, refactor to let supporting
376                          * code decide whether there is support and what meaningfull
377                          * error to return
378                          */
379                         break;
380                 case PHOTOMETRIC_RGB:
381                         if (colorchannels < 3) {
382                                 sprintf(emsg, "Sorry, can not handle RGB image with %s=%d",
383                                     "Color channels", colorchannels);
384                                 goto fail_return;
385                         }
386                         break;
387                 case PHOTOMETRIC_SEPARATED:
388                         {
389                                 uint16 inkset;
390                                 TIFFGetFieldDefaulted(tif, TIFFTAG_INKSET, &inkset);
391                                 if (inkset != INKSET_CMYK) {
392                                         sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
393                                             "InkSet", inkset);
394                                         goto fail_return;
395                                 }
396                                 if (img->samplesperpixel < 4) {
397                                         sprintf(emsg, "Sorry, can not handle separated image with %s=%d",
398                                             "Samples/pixel", img->samplesperpixel);
399                                         goto fail_return;
400                                 }
401                         }
402                         break;
403                 case PHOTOMETRIC_LOGL:
404                         if (compress != COMPRESSION_SGILOG) {
405                                 sprintf(emsg, "Sorry, LogL data must have %s=%d",
406                                     "Compression", COMPRESSION_SGILOG);
407                                 goto fail_return;
408                         }
409                         TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
410                         img->photometric = PHOTOMETRIC_MINISBLACK;      /* little white lie */
411                         img->bitspersample = 8;
412                         break;
413                 case PHOTOMETRIC_LOGLUV:
414                         if (compress != COMPRESSION_SGILOG && compress != COMPRESSION_SGILOG24) {
415                                 sprintf(emsg, "Sorry, LogLuv data must have %s=%d or %d",
416                                     "Compression", COMPRESSION_SGILOG, COMPRESSION_SGILOG24);
417                                 goto fail_return;
418                         }
419                         if (planarconfig != PLANARCONFIG_CONTIG) {
420                                 sprintf(emsg, "Sorry, can not handle LogLuv images with %s=%d",
421                                     "Planarconfiguration", planarconfig);
422                                 return (0);
423                         }
424                         TIFFSetField(tif, TIFFTAG_SGILOGDATAFMT, SGILOGDATAFMT_8BIT);
425                         img->photometric = PHOTOMETRIC_RGB;             /* little white lie */
426                         img->bitspersample = 8;
427                         break;
428                 case PHOTOMETRIC_CIELAB:
429                         break;
430                 default:
431                         sprintf(emsg, "Sorry, can not handle image with %s=%d",
432                             photoTag, img->photometric);
433                         goto fail_return;
434         }
435         img->Map = NULL;
436         img->BWmap = NULL;
437         img->PALmap = NULL;
438         img->ycbcr = NULL;
439         img->cielab = NULL;
440         img->UaToAa = NULL;
441         img->Bitdepth16To8 = NULL;
442         TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &img->width);
443         TIFFGetField(tif, TIFFTAG_IMAGELENGTH, &img->height);
444         TIFFGetFieldDefaulted(tif, TIFFTAG_ORIENTATION, &img->orientation);
445         img->isContig =
446             !(planarconfig == PLANARCONFIG_SEPARATE && img->samplesperpixel > 1);
447         if (img->isContig) {
448                 if (!PickContigCase(img)) {
449                         sprintf(emsg, "Sorry, can not handle image");
450                         goto fail_return;
451                 }
452         } else {
453                 if (!PickSeparateCase(img)) {
454                         sprintf(emsg, "Sorry, can not handle image");
455                         goto fail_return;
456                 }
457         }
458         return 1;
459
460   fail_return:
461         _TIFFfree( img->redcmap );
462         _TIFFfree( img->greencmap );
463         _TIFFfree( img->bluecmap );
464         img->redcmap = img->greencmap = img->bluecmap = NULL;
465         return 0;
466 }
467
468 int
469 TIFFRGBAImageGet(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
470 {
471     if (img->get == NULL) {
472                 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No \"get\" routine setup");
473                 return (0);
474         }
475         if (img->put.any == NULL) {
476                 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
477                 "No \"put\" routine setupl; probably can not handle image format");
478                 return (0);
479     }
480     return (*img->get)(img, raster, w, h);
481 }
482
483 /*
484  * Read the specified image into an ABGR-format rastertaking in account
485  * specified orientation.
486  */
487 int
488 TIFFReadRGBAImageOriented(TIFF* tif,
489                           uint32 rwidth, uint32 rheight, uint32* raster,
490                           int orientation, int stop)
491 {
492     char emsg[1024] = "";
493     TIFFRGBAImage img;
494     int ok;
495
496         if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, stop, emsg)) {
497                 img.req_orientation = orientation;
498                 /* XXX verify rwidth and rheight against width and height */
499                 ok = TIFFRGBAImageGet(&img, raster+(rheight-img.height)*rwidth,
500                         rwidth, img.height);
501                 TIFFRGBAImageEnd(&img);
502         } else {
503                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
504                 ok = 0;
505     }
506     return (ok);
507 }
508
509 /*
510  * Read the specified image into an ABGR-format raster. Use bottom left
511  * origin for raster by default.
512  */
513 int
514 TIFFReadRGBAImage(TIFF* tif,
515                   uint32 rwidth, uint32 rheight, uint32* raster, int stop)
516 {
517         return TIFFReadRGBAImageOriented(tif, rwidth, rheight, raster,
518                                          ORIENTATION_BOTLEFT, stop);
519 }
520
521 static int 
522 setorientation(TIFFRGBAImage* img)
523 {
524         switch (img->orientation) {
525                 case ORIENTATION_TOPLEFT:
526                 case ORIENTATION_LEFTTOP:
527                         if (img->req_orientation == ORIENTATION_TOPRIGHT ||
528                             img->req_orientation == ORIENTATION_RIGHTTOP)
529                                 return FLIP_HORIZONTALLY;
530                         else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
531                             img->req_orientation == ORIENTATION_RIGHTBOT)
532                                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
533                         else if (img->req_orientation == ORIENTATION_BOTLEFT ||
534                             img->req_orientation == ORIENTATION_LEFTBOT)
535                                 return FLIP_VERTICALLY;
536                         else
537                                 return 0;
538                 case ORIENTATION_TOPRIGHT:
539                 case ORIENTATION_RIGHTTOP:
540                         if (img->req_orientation == ORIENTATION_TOPLEFT ||
541                             img->req_orientation == ORIENTATION_LEFTTOP)
542                                 return FLIP_HORIZONTALLY;
543                         else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
544                             img->req_orientation == ORIENTATION_RIGHTBOT)
545                                 return FLIP_VERTICALLY;
546                         else if (img->req_orientation == ORIENTATION_BOTLEFT ||
547                             img->req_orientation == ORIENTATION_LEFTBOT)
548                                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
549                         else
550                                 return 0;
551                 case ORIENTATION_BOTRIGHT:
552                 case ORIENTATION_RIGHTBOT:
553                         if (img->req_orientation == ORIENTATION_TOPLEFT ||
554                             img->req_orientation == ORIENTATION_LEFTTOP)
555                                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
556                         else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
557                             img->req_orientation == ORIENTATION_RIGHTTOP)
558                                 return FLIP_VERTICALLY;
559                         else if (img->req_orientation == ORIENTATION_BOTLEFT ||
560                             img->req_orientation == ORIENTATION_LEFTBOT)
561                                 return FLIP_HORIZONTALLY;
562                         else
563                                 return 0;
564                 case ORIENTATION_BOTLEFT:
565                 case ORIENTATION_LEFTBOT:
566                         if (img->req_orientation == ORIENTATION_TOPLEFT ||
567                             img->req_orientation == ORIENTATION_LEFTTOP)
568                                 return FLIP_VERTICALLY;
569                         else if (img->req_orientation == ORIENTATION_TOPRIGHT ||
570                             img->req_orientation == ORIENTATION_RIGHTTOP)
571                                 return FLIP_HORIZONTALLY | FLIP_VERTICALLY;
572                         else if (img->req_orientation == ORIENTATION_BOTRIGHT ||
573                             img->req_orientation == ORIENTATION_RIGHTBOT)
574                                 return FLIP_HORIZONTALLY;
575                         else
576                                 return 0;
577                 default:        /* NOTREACHED */
578                         return 0;
579         }
580 }
581
582 /*
583  * Get an tile-organized image that has
584  *      PlanarConfiguration contiguous if SamplesPerPixel > 1
585  * or
586  *      SamplesPerPixel == 1
587  */     
588 static int
589 gtTileContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
590 {
591     TIFF* tif = img->tif;
592     tileContigRoutine put = img->put.contig;
593     uint32 col, row, y, rowstoread;
594     tmsize_t pos;
595     uint32 tw, th;
596     unsigned char* buf;
597     int32 fromskew, toskew;
598     uint32 nrow;
599     int ret = 1, flip;
600
601     buf = (unsigned char*) _TIFFmalloc(TIFFTileSize(tif));
602     if (buf == 0) {
603                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
604                 return (0);
605     }
606     _TIFFmemset(buf, 0, TIFFTileSize(tif));
607     TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
608     TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
609
610     flip = setorientation(img);
611     if (flip & FLIP_VERTICALLY) {
612             y = h - 1;
613             toskew = -(int32)(tw + w);
614     }
615     else {
616             y = 0;
617             toskew = -(int32)(tw - w);
618     }
619      
620     for (row = 0; row < h; row += nrow)
621     {
622         rowstoread = th - (row + img->row_offset) % th;
623         nrow = (row + rowstoread > h ? h - row : rowstoread);
624         for (col = 0; col < w; col += tw) 
625         {
626             if (TIFFReadTile(tif, buf, col+img->col_offset,  
627                              row+img->row_offset, 0, 0)==(tmsize_t)(-1) && img->stoponerr)
628             {
629                 ret = 0;
630                 break;
631             }
632             
633             pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);  
634
635             if (col + tw > w) 
636             {
637                 /*
638                  * Tile is clipped horizontally.  Calculate
639                  * visible portion and skewing factors.
640                  */
641                 uint32 npix = w - col;
642                 fromskew = tw - npix;
643                 (*put)(img, raster+y*w+col, col, y,
644                        npix, nrow, fromskew, toskew + fromskew, buf + pos);
645             }
646             else 
647             {
648                 (*put)(img, raster+y*w+col, col, y, tw, nrow, 0, toskew, buf + pos);
649             }
650         }
651
652         y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
653     }
654     _TIFFfree(buf);
655
656     if (flip & FLIP_HORIZONTALLY) {
657             uint32 line;
658
659             for (line = 0; line < h; line++) {
660                     uint32 *left = raster + (line * w);
661                     uint32 *right = left + w - 1;
662                     
663                     while ( left < right ) {
664                             uint32 temp = *left;
665                             *left = *right;
666                             *right = temp;
667                             left++, right--;
668                     }
669             }
670     }
671
672     return (ret);
673 }
674
675 /*
676  * Get an tile-organized image that has
677  *       SamplesPerPixel > 1
678  *       PlanarConfiguration separated
679  * We assume that all such images are RGB.
680  */     
681 static int
682 gtTileSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
683 {
684         TIFF* tif = img->tif;
685         tileSeparateRoutine put = img->put.separate;
686         uint32 col, row, y, rowstoread;
687         tmsize_t pos;
688         uint32 tw, th;
689         unsigned char* buf;
690         unsigned char* p0;
691         unsigned char* p1;
692         unsigned char* p2;
693         unsigned char* pa;
694         tmsize_t tilesize;
695         tmsize_t bufsize;
696         int32 fromskew, toskew;
697         int alpha = img->alpha;
698         uint32 nrow;
699         int ret = 1, flip;
700         int colorchannels;
701
702         tilesize = TIFFTileSize(tif);  
703         bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,tilesize);
704         if (bufsize == 0) {
705                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtTileSeparate");
706                 return (0);
707         }
708         buf = (unsigned char*) _TIFFmalloc(bufsize);
709         if (buf == 0) {
710                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", "No space for tile buffer");
711                 return (0);
712         }
713         _TIFFmemset(buf, 0, bufsize);
714         p0 = buf;
715         p1 = p0 + tilesize;
716         p2 = p1 + tilesize;
717         pa = (alpha?(p2+tilesize):NULL);
718         TIFFGetField(tif, TIFFTAG_TILEWIDTH, &tw);
719         TIFFGetField(tif, TIFFTAG_TILELENGTH, &th);
720
721         flip = setorientation(img);
722         if (flip & FLIP_VERTICALLY) {
723                 y = h - 1;
724                 toskew = -(int32)(tw + w);
725         }
726         else {
727                 y = 0;
728                 toskew = -(int32)(tw - w);
729         }
730
731         switch( img->photometric )
732         {
733           case PHOTOMETRIC_MINISWHITE:
734           case PHOTOMETRIC_MINISBLACK:
735           case PHOTOMETRIC_PALETTE:
736             colorchannels = 1;
737             p2 = p1 = p0;
738             break;
739
740           default:
741             colorchannels = 3;
742             break;
743         }
744
745         for (row = 0; row < h; row += nrow)
746         {
747                 rowstoread = th - (row + img->row_offset) % th;
748                 nrow = (row + rowstoread > h ? h - row : rowstoread);
749                 for (col = 0; col < w; col += tw)
750                 {
751                         if (TIFFReadTile(tif, p0, col+img->col_offset,  
752                             row+img->row_offset,0,0)==(tmsize_t)(-1) && img->stoponerr)
753                         {
754                                 ret = 0;
755                                 break;
756                         }
757                         if (colorchannels > 1 
758                             && TIFFReadTile(tif, p1, col+img->col_offset,  
759                                             row+img->row_offset,0,1) == (tmsize_t)(-1) 
760                             && img->stoponerr)
761                         {
762                                 ret = 0;
763                                 break;
764                         }
765                         if (colorchannels > 1 
766                             && TIFFReadTile(tif, p2, col+img->col_offset,  
767                                             row+img->row_offset,0,2) == (tmsize_t)(-1) 
768                             && img->stoponerr)
769                         {
770                                 ret = 0;
771                                 break;
772                         }
773                         if (alpha
774                             && TIFFReadTile(tif,pa,col+img->col_offset,  
775                                             row+img->row_offset,0,colorchannels) == (tmsize_t)(-1) 
776                             && img->stoponerr)
777                         {
778                             ret = 0;
779                             break;
780                         }
781
782                         pos = ((row+img->row_offset) % th) * TIFFTileRowSize(tif);  
783
784                         if (col + tw > w)
785                         {
786                                 /*
787                                  * Tile is clipped horizontally.  Calculate
788                                  * visible portion and skewing factors.
789                                  */
790                                 uint32 npix = w - col;
791                                 fromskew = tw - npix;
792                                 (*put)(img, raster+y*w+col, col, y,
793                                     npix, nrow, fromskew, toskew + fromskew,
794                                     p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
795                         } else {
796                                 (*put)(img, raster+y*w+col, col, y,
797                                     tw, nrow, 0, toskew, p0 + pos, p1 + pos, p2 + pos, (alpha?(pa+pos):NULL));
798                         }
799                 }
800
801                 y += (flip & FLIP_VERTICALLY ?-(int32) nrow : (int32) nrow);
802         }
803
804         if (flip & FLIP_HORIZONTALLY) {
805                 uint32 line;
806
807                 for (line = 0; line < h; line++) {
808                         uint32 *left = raster + (line * w);
809                         uint32 *right = left + w - 1;
810
811                         while ( left < right ) {
812                                 uint32 temp = *left;
813                                 *left = *right;
814                                 *right = temp;
815                                 left++, right--;
816                         }
817                 }
818         }
819
820         _TIFFfree(buf);
821         return (ret);
822 }
823
824 /*
825  * Get a strip-organized image that has
826  *      PlanarConfiguration contiguous if SamplesPerPixel > 1
827  * or
828  *      SamplesPerPixel == 1
829  */     
830 static int
831 gtStripContig(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
832 {
833         TIFF* tif = img->tif;
834         tileContigRoutine put = img->put.contig;
835         uint32 row, y, nrow, nrowsub, rowstoread;
836         tmsize_t pos;
837         unsigned char* buf;
838         uint32 rowsperstrip;
839         uint16 subsamplinghor,subsamplingver;
840         uint32 imagewidth = img->width;
841         tmsize_t scanline;
842         int32 fromskew, toskew;
843         int ret = 1, flip;
844
845         buf = (unsigned char*) _TIFFmalloc(TIFFStripSize(tif));
846         if (buf == 0) {
847                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for strip buffer");
848                 return (0);
849         }
850         _TIFFmemset(buf, 0, TIFFStripSize(tif));
851
852         flip = setorientation(img);
853         if (flip & FLIP_VERTICALLY) {
854                 y = h - 1;
855                 toskew = -(int32)(w + w);
856         } else {
857                 y = 0;
858                 toskew = -(int32)(w - w);
859         }
860
861         TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
862         TIFFGetFieldDefaulted(tif, TIFFTAG_YCBCRSUBSAMPLING, &subsamplinghor, &subsamplingver);
863         scanline = TIFFScanlineSize(tif);
864         fromskew = (w < imagewidth ? imagewidth - w : 0);
865         for (row = 0; row < h; row += nrow)
866         {
867                 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
868                 nrow = (row + rowstoread > h ? h - row : rowstoread);
869                 nrowsub = nrow;
870                 if ((nrowsub%subsamplingver)!=0)
871                         nrowsub+=subsamplingver-nrowsub%subsamplingver;
872                 if (TIFFReadEncodedStrip(tif,
873                     TIFFComputeStrip(tif,row+img->row_offset, 0),
874                     buf,
875                     ((row + img->row_offset)%rowsperstrip + nrowsub) * scanline)==(tmsize_t)(-1)
876                     && img->stoponerr)
877                 {
878                         ret = 0;
879                         break;
880                 }
881
882                 pos = ((row + img->row_offset) % rowsperstrip) * scanline;
883                 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, buf + pos);
884                 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
885         }
886
887         if (flip & FLIP_HORIZONTALLY) {
888                 uint32 line;
889
890                 for (line = 0; line < h; line++) {
891                         uint32 *left = raster + (line * w);
892                         uint32 *right = left + w - 1;
893
894                         while ( left < right ) {
895                                 uint32 temp = *left;
896                                 *left = *right;
897                                 *right = temp;
898                                 left++, right--;
899                         }
900                 }
901         }
902
903         _TIFFfree(buf);
904         return (ret);
905 }
906
907 /*
908  * Get a strip-organized image with
909  *       SamplesPerPixel > 1
910  *       PlanarConfiguration separated
911  * We assume that all such images are RGB.
912  */
913 static int
914 gtStripSeparate(TIFFRGBAImage* img, uint32* raster, uint32 w, uint32 h)
915 {
916         TIFF* tif = img->tif;
917         tileSeparateRoutine put = img->put.separate;
918         unsigned char *buf;
919         unsigned char *p0, *p1, *p2, *pa;
920         uint32 row, y, nrow, rowstoread;
921         tmsize_t pos;
922         tmsize_t scanline;
923         uint32 rowsperstrip, offset_row;
924         uint32 imagewidth = img->width;
925         tmsize_t stripsize;
926         tmsize_t bufsize;
927         int32 fromskew, toskew;
928         int alpha = img->alpha;
929         int ret = 1, flip, colorchannels;
930
931         stripsize = TIFFStripSize(tif);  
932         bufsize = TIFFSafeMultiply(tmsize_t,alpha?4:3,stripsize);
933         if (bufsize == 0) {
934                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "Integer overflow in %s", "gtStripSeparate");
935                 return (0);
936         }
937         p0 = buf = (unsigned char *)_TIFFmalloc(bufsize);
938         if (buf == 0) {
939                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "No space for tile buffer");
940                 return (0);
941         }
942         _TIFFmemset(buf, 0, bufsize);
943         p1 = p0 + stripsize;
944         p2 = p1 + stripsize;
945         pa = (alpha?(p2+stripsize):NULL);
946
947         flip = setorientation(img);
948         if (flip & FLIP_VERTICALLY) {
949                 y = h - 1;
950                 toskew = -(int32)(w + w);
951         }
952         else {
953                 y = 0;
954                 toskew = -(int32)(w - w);
955         }
956
957         switch( img->photometric )
958         {
959           case PHOTOMETRIC_MINISWHITE:
960           case PHOTOMETRIC_MINISBLACK:
961           case PHOTOMETRIC_PALETTE:
962             colorchannels = 1;
963             p2 = p1 = p0;
964             break;
965
966           default:
967             colorchannels = 3;
968             break;
969         }
970
971         TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
972         scanline = TIFFScanlineSize(tif);  
973         fromskew = (w < imagewidth ? imagewidth - w : 0);
974         for (row = 0; row < h; row += nrow)
975         {
976                 rowstoread = rowsperstrip - (row + img->row_offset) % rowsperstrip;
977                 nrow = (row + rowstoread > h ? h - row : rowstoread);
978                 offset_row = row + img->row_offset;
979                 if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 0),
980                     p0, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
981                     && img->stoponerr)
982                 {
983                         ret = 0;
984                         break;
985                 }
986                 if (colorchannels > 1 
987                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 1),
988                                             p1, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
989                     && img->stoponerr)
990                 {
991                         ret = 0;
992                         break;
993                 }
994                 if (colorchannels > 1 
995                     && TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, 2),
996                                             p2, ((row + img->row_offset)%rowsperstrip + nrow) * scanline) == (tmsize_t)(-1)
997                     && img->stoponerr)
998                 {
999                         ret = 0;
1000                         break;
1001                 }
1002                 if (alpha)
1003                 {
1004                         if (TIFFReadEncodedStrip(tif, TIFFComputeStrip(tif, offset_row, colorchannels),
1005                             pa, ((row + img->row_offset)%rowsperstrip + nrow) * scanline)==(tmsize_t)(-1)
1006                             && img->stoponerr)
1007                         {
1008                                 ret = 0;
1009                                 break;
1010                         }
1011                 }
1012
1013                 pos = ((row + img->row_offset) % rowsperstrip) * scanline;
1014                 (*put)(img, raster+y*w, 0, y, w, nrow, fromskew, toskew, p0 + pos, p1 + pos,
1015                     p2 + pos, (alpha?(pa+pos):NULL));
1016                 y += (flip & FLIP_VERTICALLY ? -(int32) nrow : (int32) nrow);
1017         }
1018
1019         if (flip & FLIP_HORIZONTALLY) {
1020                 uint32 line;
1021
1022                 for (line = 0; line < h; line++) {
1023                         uint32 *left = raster + (line * w);
1024                         uint32 *right = left + w - 1;
1025
1026                         while ( left < right ) {
1027                                 uint32 temp = *left;
1028                                 *left = *right;
1029                                 *right = temp;
1030                                 left++, right--;
1031                         }
1032                 }
1033         }
1034
1035         _TIFFfree(buf);
1036         return (ret);
1037 }
1038
1039 /*
1040  * The following routines move decoded data returned
1041  * from the TIFF library into rasters filled with packed
1042  * ABGR pixels (i.e. suitable for passing to lrecwrite.)
1043  *
1044  * The routines have been created according to the most
1045  * important cases and optimized.  PickContigCase and
1046  * PickSeparateCase analyze the parameters and select
1047  * the appropriate "get" and "put" routine to use.
1048  */
1049 #define REPEAT8(op)     REPEAT4(op); REPEAT4(op)
1050 #define REPEAT4(op)     REPEAT2(op); REPEAT2(op)
1051 #define REPEAT2(op)     op; op
1052 #define CASE8(x,op)                     \
1053     switch (x) {                        \
1054     case 7: op; case 6: op; case 5: op; \
1055     case 4: op; case 3: op; case 2: op; \
1056     case 1: op;                         \
1057     }
1058 #define CASE4(x,op)     switch (x) { case 3: op; case 2: op; case 1: op; }
1059 #define NOP
1060
1061 #define UNROLL8(w, op1, op2) {          \
1062     uint32 _x;                          \
1063     for (_x = w; _x >= 8; _x -= 8) {    \
1064         op1;                            \
1065         REPEAT8(op2);                   \
1066     }                                   \
1067     if (_x > 0) {                       \
1068         op1;                            \
1069         CASE8(_x,op2);                  \
1070     }                                   \
1071 }
1072 #define UNROLL4(w, op1, op2) {          \
1073     uint32 _x;                          \
1074     for (_x = w; _x >= 4; _x -= 4) {    \
1075         op1;                            \
1076         REPEAT4(op2);                   \
1077     }                                   \
1078     if (_x > 0) {                       \
1079         op1;                            \
1080         CASE4(_x,op2);                  \
1081     }                                   \
1082 }
1083 #define UNROLL2(w, op1, op2) {          \
1084     uint32 _x;                          \
1085     for (_x = w; _x >= 2; _x -= 2) {    \
1086         op1;                            \
1087         REPEAT2(op2);                   \
1088     }                                   \
1089     if (_x) {                           \
1090         op1;                            \
1091         op2;                            \
1092     }                                   \
1093 }
1094     
1095 #define SKEW(r,g,b,skew)        { r += skew; g += skew; b += skew; }
1096 #define SKEW4(r,g,b,a,skew)     { r += skew; g += skew; b += skew; a+= skew; }
1097
1098 #define A1 (((uint32)0xffL)<<24)
1099 #define PACK(r,g,b)     \
1100         ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|A1)
1101 #define PACK4(r,g,b,a)  \
1102         ((uint32)(r)|((uint32)(g)<<8)|((uint32)(b)<<16)|((uint32)(a)<<24))
1103 #define W2B(v) (((v)>>8)&0xff)
1104 /* TODO: PACKW should have be made redundant in favor of Bitdepth16To8 LUT */
1105 #define PACKW(r,g,b)    \
1106         ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|A1)
1107 #define PACKW4(r,g,b,a) \
1108         ((uint32)W2B(r)|((uint32)W2B(g)<<8)|((uint32)W2B(b)<<16)|((uint32)W2B(a)<<24))
1109
1110 #define DECLAREContigPutFunc(name) \
1111 static void name(\
1112     TIFFRGBAImage* img, \
1113     uint32* cp, \
1114     uint32 x, uint32 y, \
1115     uint32 w, uint32 h, \
1116     int32 fromskew, int32 toskew, \
1117     unsigned char* pp \
1118 )
1119
1120 /*
1121  * 8-bit palette => colormap/RGB
1122  */
1123 DECLAREContigPutFunc(put8bitcmaptile)
1124 {
1125     uint32** PALmap = img->PALmap;
1126     int samplesperpixel = img->samplesperpixel;
1127
1128     (void) y;
1129     while (h-- > 0) {
1130         for (x = w; x-- > 0;)
1131         {
1132             *cp++ = PALmap[*pp][0];
1133             pp += samplesperpixel;
1134         }
1135         cp += toskew;
1136         pp += fromskew;
1137     }
1138 }
1139
1140 /*
1141  * 4-bit palette => colormap/RGB
1142  */
1143 DECLAREContigPutFunc(put4bitcmaptile)
1144 {
1145     uint32** PALmap = img->PALmap;
1146
1147     (void) x; (void) y;
1148     fromskew /= 2;
1149     while (h-- > 0) {
1150         uint32* bw;
1151         UNROLL2(w, bw = PALmap[*pp++], *cp++ = *bw++);
1152         cp += toskew;
1153         pp += fromskew;
1154     }
1155 }
1156
1157 /*
1158  * 2-bit palette => colormap/RGB
1159  */
1160 DECLAREContigPutFunc(put2bitcmaptile)
1161 {
1162     uint32** PALmap = img->PALmap;
1163
1164     (void) x; (void) y;
1165     fromskew /= 4;
1166     while (h-- > 0) {
1167         uint32* bw;
1168         UNROLL4(w, bw = PALmap[*pp++], *cp++ = *bw++);
1169         cp += toskew;
1170         pp += fromskew;
1171     }
1172 }
1173
1174 /*
1175  * 1-bit palette => colormap/RGB
1176  */
1177 DECLAREContigPutFunc(put1bitcmaptile)
1178 {
1179     uint32** PALmap = img->PALmap;
1180
1181     (void) x; (void) y;
1182     fromskew /= 8;
1183     while (h-- > 0) {
1184         uint32* bw;
1185         UNROLL8(w, bw = PALmap[*pp++], *cp++ = *bw++);
1186         cp += toskew;
1187         pp += fromskew;
1188     }
1189 }
1190
1191 /*
1192  * 8-bit greyscale => colormap/RGB
1193  */
1194 DECLAREContigPutFunc(putgreytile)
1195 {
1196     int samplesperpixel = img->samplesperpixel;
1197     uint32** BWmap = img->BWmap;
1198
1199     (void) y;
1200     while (h-- > 0) {
1201         for (x = w; x-- > 0;)
1202         {
1203             *cp++ = BWmap[*pp][0];
1204             pp += samplesperpixel;
1205         }
1206         cp += toskew;
1207         pp += fromskew;
1208     }
1209 }
1210
1211 /*
1212  * 8-bit greyscale with associated alpha => colormap/RGBA
1213  */
1214 DECLAREContigPutFunc(putagreytile)
1215 {
1216     int samplesperpixel = img->samplesperpixel;
1217     uint32** BWmap = img->BWmap;
1218
1219     (void) y;
1220     while (h-- > 0) {
1221         for (x = w; x-- > 0;)
1222         {
1223             *cp++ = BWmap[*pp][0] & (*(pp+1) << 24 | ~A1);
1224             pp += samplesperpixel;
1225         }
1226         cp += toskew;
1227         pp += fromskew;
1228     }
1229 }
1230
1231 /*
1232  * 16-bit greyscale => colormap/RGB
1233  */
1234 DECLAREContigPutFunc(put16bitbwtile)
1235 {
1236     int samplesperpixel = img->samplesperpixel;
1237     uint32** BWmap = img->BWmap;
1238
1239     (void) y;
1240     while (h-- > 0) {
1241         uint16 *wp = (uint16 *) pp;
1242
1243         for (x = w; x-- > 0;)
1244         {
1245             /* use high order byte of 16bit value */
1246
1247             *cp++ = BWmap[*wp >> 8][0];
1248             pp += 2 * samplesperpixel;
1249             wp += samplesperpixel;
1250         }
1251         cp += toskew;
1252         pp += fromskew;
1253     }
1254 }
1255
1256 /*
1257  * 1-bit bilevel => colormap/RGB
1258  */
1259 DECLAREContigPutFunc(put1bitbwtile)
1260 {
1261     uint32** BWmap = img->BWmap;
1262
1263     (void) x; (void) y;
1264     fromskew /= 8;
1265     while (h-- > 0) {
1266         uint32* bw;
1267         UNROLL8(w, bw = BWmap[*pp++], *cp++ = *bw++);
1268         cp += toskew;
1269         pp += fromskew;
1270     }
1271 }
1272
1273 /*
1274  * 2-bit greyscale => colormap/RGB
1275  */
1276 DECLAREContigPutFunc(put2bitbwtile)
1277 {
1278     uint32** BWmap = img->BWmap;
1279
1280     (void) x; (void) y;
1281     fromskew /= 4;
1282     while (h-- > 0) {
1283         uint32* bw;
1284         UNROLL4(w, bw = BWmap[*pp++], *cp++ = *bw++);
1285         cp += toskew;
1286         pp += fromskew;
1287     }
1288 }
1289
1290 /*
1291  * 4-bit greyscale => colormap/RGB
1292  */
1293 DECLAREContigPutFunc(put4bitbwtile)
1294 {
1295     uint32** BWmap = img->BWmap;
1296
1297     (void) x; (void) y;
1298     fromskew /= 2;
1299     while (h-- > 0) {
1300         uint32* bw;
1301         UNROLL2(w, bw = BWmap[*pp++], *cp++ = *bw++);
1302         cp += toskew;
1303         pp += fromskew;
1304     }
1305 }
1306
1307 /*
1308  * 8-bit packed samples, no Map => RGB
1309  */
1310 DECLAREContigPutFunc(putRGBcontig8bittile)
1311 {
1312     int samplesperpixel = img->samplesperpixel;
1313
1314     (void) x; (void) y;
1315     fromskew *= samplesperpixel;
1316     while (h-- > 0) {
1317         UNROLL8(w, NOP,
1318             *cp++ = PACK(pp[0], pp[1], pp[2]);
1319             pp += samplesperpixel);
1320         cp += toskew;
1321         pp += fromskew;
1322     }
1323 }
1324
1325 /*
1326  * 8-bit packed samples => RGBA w/ associated alpha
1327  * (known to have Map == NULL)
1328  */
1329 DECLAREContigPutFunc(putRGBAAcontig8bittile)
1330 {
1331     int samplesperpixel = img->samplesperpixel;
1332
1333     (void) x; (void) y;
1334     fromskew *= samplesperpixel;
1335     while (h-- > 0) {
1336         UNROLL8(w, NOP,
1337             *cp++ = PACK4(pp[0], pp[1], pp[2], pp[3]);
1338             pp += samplesperpixel);
1339         cp += toskew;
1340         pp += fromskew;
1341     }
1342 }
1343
1344 /*
1345  * 8-bit packed samples => RGBA w/ unassociated alpha
1346  * (known to have Map == NULL)
1347  */
1348 DECLAREContigPutFunc(putRGBUAcontig8bittile)
1349 {
1350         int samplesperpixel = img->samplesperpixel;
1351         (void) y;
1352         fromskew *= samplesperpixel;
1353         while (h-- > 0) {
1354                 uint32 r, g, b, a;
1355                 uint8* m;
1356                 for (x = w; x-- > 0;) {
1357                         a = pp[3];
1358                         m = img->UaToAa+(a<<8);
1359                         r = m[pp[0]];
1360                         g = m[pp[1]];
1361                         b = m[pp[2]];
1362                         *cp++ = PACK4(r,g,b,a);
1363                         pp += samplesperpixel;
1364                 }
1365                 cp += toskew;
1366                 pp += fromskew;
1367         }
1368 }
1369
1370 /*
1371  * 16-bit packed samples => RGB
1372  */
1373 DECLAREContigPutFunc(putRGBcontig16bittile)
1374 {
1375         int samplesperpixel = img->samplesperpixel;
1376         uint16 *wp = (uint16 *)pp;
1377         (void) y;
1378         fromskew *= samplesperpixel;
1379         while (h-- > 0) {
1380                 for (x = w; x-- > 0;) {
1381                         *cp++ = PACK(img->Bitdepth16To8[wp[0]],
1382                             img->Bitdepth16To8[wp[1]],
1383                             img->Bitdepth16To8[wp[2]]);
1384                         wp += samplesperpixel;
1385                 }
1386                 cp += toskew;
1387                 wp += fromskew;
1388         }
1389 }
1390
1391 /*
1392  * 16-bit packed samples => RGBA w/ associated alpha
1393  * (known to have Map == NULL)
1394  */
1395 DECLAREContigPutFunc(putRGBAAcontig16bittile)
1396 {
1397         int samplesperpixel = img->samplesperpixel;
1398         uint16 *wp = (uint16 *)pp;
1399         (void) y;
1400         fromskew *= samplesperpixel;
1401         while (h-- > 0) {
1402                 for (x = w; x-- > 0;) {
1403                         *cp++ = PACK4(img->Bitdepth16To8[wp[0]],
1404                             img->Bitdepth16To8[wp[1]],
1405                             img->Bitdepth16To8[wp[2]],
1406                             img->Bitdepth16To8[wp[3]]);
1407                         wp += samplesperpixel;
1408                 }
1409                 cp += toskew;
1410                 wp += fromskew;
1411         }
1412 }
1413
1414 /*
1415  * 16-bit packed samples => RGBA w/ unassociated alpha
1416  * (known to have Map == NULL)
1417  */
1418 DECLAREContigPutFunc(putRGBUAcontig16bittile)
1419 {
1420         int samplesperpixel = img->samplesperpixel;
1421         uint16 *wp = (uint16 *)pp;
1422         (void) y;
1423         fromskew *= samplesperpixel;
1424         while (h-- > 0) {
1425                 uint32 r,g,b,a;
1426                 uint8* m;
1427                 for (x = w; x-- > 0;) {
1428                         a = img->Bitdepth16To8[wp[3]];
1429                         m = img->UaToAa+(a<<8);
1430                         r = m[img->Bitdepth16To8[wp[0]]];
1431                         g = m[img->Bitdepth16To8[wp[1]]];
1432                         b = m[img->Bitdepth16To8[wp[2]]];
1433                         *cp++ = PACK4(r,g,b,a);
1434                         wp += samplesperpixel;
1435                 }
1436                 cp += toskew;
1437                 wp += fromskew;
1438         }
1439 }
1440
1441 /*
1442  * 8-bit packed CMYK samples w/o Map => RGB
1443  *
1444  * NB: The conversion of CMYK->RGB is *very* crude.
1445  */
1446 DECLAREContigPutFunc(putRGBcontig8bitCMYKtile)
1447 {
1448     int samplesperpixel = img->samplesperpixel;
1449     uint16 r, g, b, k;
1450
1451     (void) x; (void) y;
1452     fromskew *= samplesperpixel;
1453     while (h-- > 0) {
1454         UNROLL8(w, NOP,
1455             k = 255 - pp[3];
1456             r = (k*(255-pp[0]))/255;
1457             g = (k*(255-pp[1]))/255;
1458             b = (k*(255-pp[2]))/255;
1459             *cp++ = PACK(r, g, b);
1460             pp += samplesperpixel);
1461         cp += toskew;
1462         pp += fromskew;
1463     }
1464 }
1465
1466 /*
1467  * 8-bit packed CMYK samples w/Map => RGB
1468  *
1469  * NB: The conversion of CMYK->RGB is *very* crude.
1470  */
1471 DECLAREContigPutFunc(putRGBcontig8bitCMYKMaptile)
1472 {
1473     int samplesperpixel = img->samplesperpixel;
1474     TIFFRGBValue* Map = img->Map;
1475     uint16 r, g, b, k;
1476
1477     (void) y;
1478     fromskew *= samplesperpixel;
1479     while (h-- > 0) {
1480         for (x = w; x-- > 0;) {
1481             k = 255 - pp[3];
1482             r = (k*(255-pp[0]))/255;
1483             g = (k*(255-pp[1]))/255;
1484             b = (k*(255-pp[2]))/255;
1485             *cp++ = PACK(Map[r], Map[g], Map[b]);
1486             pp += samplesperpixel;
1487         }
1488         pp += fromskew;
1489         cp += toskew;
1490     }
1491 }
1492
1493 #define DECLARESepPutFunc(name) \
1494 static void name(\
1495     TIFFRGBAImage* img,\
1496     uint32* cp,\
1497     uint32 x, uint32 y, \
1498     uint32 w, uint32 h,\
1499     int32 fromskew, int32 toskew,\
1500     unsigned char* r, unsigned char* g, unsigned char* b, unsigned char* a\
1501 )
1502
1503 /*
1504  * 8-bit unpacked samples => RGB
1505  */
1506 DECLARESepPutFunc(putRGBseparate8bittile)
1507 {
1508     (void) img; (void) x; (void) y; (void) a;
1509     while (h-- > 0) {
1510         UNROLL8(w, NOP, *cp++ = PACK(*r++, *g++, *b++));
1511         SKEW(r, g, b, fromskew);
1512         cp += toskew;
1513     }
1514 }
1515
1516 /*
1517  * 8-bit unpacked samples => RGBA w/ associated alpha
1518  */
1519 DECLARESepPutFunc(putRGBAAseparate8bittile)
1520 {
1521         (void) img; (void) x; (void) y; 
1522         while (h-- > 0) {
1523                 UNROLL8(w, NOP, *cp++ = PACK4(*r++, *g++, *b++, *a++));
1524                 SKEW4(r, g, b, a, fromskew);
1525                 cp += toskew;
1526         }
1527 }
1528
1529 /*
1530  * 8-bit unpacked CMYK samples => RGBA
1531  */
1532 DECLARESepPutFunc(putCMYKseparate8bittile)
1533 {
1534         (void) img; (void) y;
1535         while (h-- > 0) {
1536                 uint32 rv, gv, bv, kv;
1537                 for (x = w; x-- > 0;) {
1538                         kv = 255 - *a++;
1539                         rv = (kv*(255-*r++))/255;
1540                         gv = (kv*(255-*g++))/255;
1541                         bv = (kv*(255-*b++))/255;
1542                         *cp++ = PACK4(rv,gv,bv,255);
1543                 }
1544                 SKEW4(r, g, b, a, fromskew);
1545                 cp += toskew;
1546         }
1547 }
1548
1549 /*
1550  * 8-bit unpacked samples => RGBA w/ unassociated alpha
1551  */
1552 DECLARESepPutFunc(putRGBUAseparate8bittile)
1553 {
1554         (void) img; (void) y;
1555         while (h-- > 0) {
1556                 uint32 rv, gv, bv, av;
1557                 uint8* m;
1558                 for (x = w; x-- > 0;) {
1559                         av = *a++;
1560                         m = img->UaToAa+(av<<8);
1561                         rv = m[*r++];
1562                         gv = m[*g++];
1563                         bv = m[*b++];
1564                         *cp++ = PACK4(rv,gv,bv,av);
1565                 }
1566                 SKEW4(r, g, b, a, fromskew);
1567                 cp += toskew;
1568         }
1569 }
1570
1571 /*
1572  * 16-bit unpacked samples => RGB
1573  */
1574 DECLARESepPutFunc(putRGBseparate16bittile)
1575 {
1576         uint16 *wr = (uint16*) r;
1577         uint16 *wg = (uint16*) g;
1578         uint16 *wb = (uint16*) b;
1579         (void) img; (void) y; (void) a;
1580         while (h-- > 0) {
1581                 for (x = 0; x < w; x++)
1582                         *cp++ = PACK(img->Bitdepth16To8[*wr++],
1583                             img->Bitdepth16To8[*wg++],
1584                             img->Bitdepth16To8[*wb++]);
1585                 SKEW(wr, wg, wb, fromskew);
1586                 cp += toskew;
1587         }
1588 }
1589
1590 /*
1591  * 16-bit unpacked samples => RGBA w/ associated alpha
1592  */
1593 DECLARESepPutFunc(putRGBAAseparate16bittile)
1594 {
1595         uint16 *wr = (uint16*) r;
1596         uint16 *wg = (uint16*) g;
1597         uint16 *wb = (uint16*) b;
1598         uint16 *wa = (uint16*) a;
1599         (void) img; (void) y;
1600         while (h-- > 0) {
1601                 for (x = 0; x < w; x++)
1602                         *cp++ = PACK4(img->Bitdepth16To8[*wr++],
1603                             img->Bitdepth16To8[*wg++],
1604                             img->Bitdepth16To8[*wb++],
1605                             img->Bitdepth16To8[*wa++]);
1606                 SKEW4(wr, wg, wb, wa, fromskew);
1607                 cp += toskew;
1608         }
1609 }
1610
1611 /*
1612  * 16-bit unpacked samples => RGBA w/ unassociated alpha
1613  */
1614 DECLARESepPutFunc(putRGBUAseparate16bittile)
1615 {
1616         uint16 *wr = (uint16*) r;
1617         uint16 *wg = (uint16*) g;
1618         uint16 *wb = (uint16*) b;
1619         uint16 *wa = (uint16*) a;
1620         (void) img; (void) y;
1621         while (h-- > 0) {
1622                 uint32 r,g,b,a;
1623                 uint8* m;
1624                 for (x = w; x-- > 0;) {
1625                         a = img->Bitdepth16To8[*wa++];
1626                         m = img->UaToAa+(a<<8);
1627                         r = m[img->Bitdepth16To8[*wr++]];
1628                         g = m[img->Bitdepth16To8[*wg++]];
1629                         b = m[img->Bitdepth16To8[*wb++]];
1630                         *cp++ = PACK4(r,g,b,a);
1631                 }
1632                 SKEW4(wr, wg, wb, wa, fromskew);
1633                 cp += toskew;
1634         }
1635 }
1636
1637 /*
1638  * 8-bit packed CIE L*a*b 1976 samples => RGB
1639  */
1640 DECLAREContigPutFunc(putcontig8bitCIELab)
1641 {
1642         float X, Y, Z;
1643         uint32 r, g, b;
1644         (void) y;
1645         fromskew *= 3;
1646         while (h-- > 0) {
1647                 for (x = w; x-- > 0;) {
1648                         TIFFCIELabToXYZ(img->cielab,
1649                                         (unsigned char)pp[0],
1650                                         (signed char)pp[1],
1651                                         (signed char)pp[2],
1652                                         &X, &Y, &Z);
1653                         TIFFXYZToRGB(img->cielab, X, Y, Z, &r, &g, &b);
1654                         *cp++ = PACK(r, g, b);
1655                         pp += 3;
1656                 }
1657                 cp += toskew;
1658                 pp += fromskew;
1659         }
1660 }
1661
1662 /*
1663  * YCbCr -> RGB conversion and packing routines.
1664  */
1665
1666 #define YCbCrtoRGB(dst, Y) {                                            \
1667         uint32 r, g, b;                                                 \
1668         TIFFYCbCrtoRGB(img->ycbcr, (Y), Cb, Cr, &r, &g, &b);            \
1669         dst = PACK(r, g, b);                                            \
1670 }
1671
1672 /*
1673  * 8-bit packed YCbCr samples => RGB 
1674  * This function is generic for different sampling sizes, 
1675  * and can handle blocks sizes that aren't multiples of the
1676  * sampling size.  However, it is substantially less optimized
1677  * than the specific sampling cases.  It is used as a fallback
1678  * for difficult blocks.
1679  */
1680 #ifdef notdef
1681 static void putcontig8bitYCbCrGenericTile( 
1682     TIFFRGBAImage* img, 
1683     uint32* cp, 
1684     uint32 x, uint32 y, 
1685     uint32 w, uint32 h, 
1686     int32 fromskew, int32 toskew, 
1687     unsigned char* pp,
1688     int h_group, 
1689     int v_group )
1690
1691 {
1692     uint32* cp1 = cp+w+toskew;
1693     uint32* cp2 = cp1+w+toskew;
1694     uint32* cp3 = cp2+w+toskew;
1695     int32 incr = 3*w+4*toskew;
1696     int32   Cb, Cr;
1697     int     group_size = v_group * h_group + 2;
1698
1699     (void) y;
1700     fromskew = (fromskew * group_size) / h_group;
1701
1702     for( yy = 0; yy < h; yy++ )
1703     {
1704         unsigned char *pp_line;
1705         int     y_line_group = yy / v_group;
1706         int     y_remainder = yy - y_line_group * v_group;
1707
1708         pp_line = pp + v_line_group * 
1709
1710         
1711         for( xx = 0; xx < w; xx++ )
1712         {
1713             Cb = pp
1714         }
1715     }
1716     for (; h >= 4; h -= 4) {
1717         x = w>>2;
1718         do {
1719             Cb = pp[16];
1720             Cr = pp[17];
1721
1722             YCbCrtoRGB(cp [0], pp[ 0]);
1723             YCbCrtoRGB(cp [1], pp[ 1]);
1724             YCbCrtoRGB(cp [2], pp[ 2]);
1725             YCbCrtoRGB(cp [3], pp[ 3]);
1726             YCbCrtoRGB(cp1[0], pp[ 4]);
1727             YCbCrtoRGB(cp1[1], pp[ 5]);
1728             YCbCrtoRGB(cp1[2], pp[ 6]);
1729             YCbCrtoRGB(cp1[3], pp[ 7]);
1730             YCbCrtoRGB(cp2[0], pp[ 8]);
1731             YCbCrtoRGB(cp2[1], pp[ 9]);
1732             YCbCrtoRGB(cp2[2], pp[10]);
1733             YCbCrtoRGB(cp2[3], pp[11]);
1734             YCbCrtoRGB(cp3[0], pp[12]);
1735             YCbCrtoRGB(cp3[1], pp[13]);
1736             YCbCrtoRGB(cp3[2], pp[14]);
1737             YCbCrtoRGB(cp3[3], pp[15]);
1738
1739             cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1740             pp += 18;
1741         } while (--x);
1742         cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1743         pp += fromskew;
1744     }
1745 }
1746 #endif
1747
1748 /*
1749  * 8-bit packed YCbCr samples w/ 4,4 subsampling => RGB
1750  */
1751 DECLAREContigPutFunc(putcontig8bitYCbCr44tile)
1752 {
1753     uint32* cp1 = cp+w+toskew;
1754     uint32* cp2 = cp1+w+toskew;
1755     uint32* cp3 = cp2+w+toskew;
1756     int32 incr = 3*w+4*toskew;
1757
1758     (void) y;
1759     /* adjust fromskew */
1760     fromskew = (fromskew * 18) / 4;
1761     if ((h & 3) == 0 && (w & 3) == 0) {                                 
1762         for (; h >= 4; h -= 4) {
1763             x = w>>2;
1764             do {
1765                 int32 Cb = pp[16];
1766                 int32 Cr = pp[17];
1767
1768                 YCbCrtoRGB(cp [0], pp[ 0]);
1769                 YCbCrtoRGB(cp [1], pp[ 1]);
1770                 YCbCrtoRGB(cp [2], pp[ 2]);
1771                 YCbCrtoRGB(cp [3], pp[ 3]);
1772                 YCbCrtoRGB(cp1[0], pp[ 4]);
1773                 YCbCrtoRGB(cp1[1], pp[ 5]);
1774                 YCbCrtoRGB(cp1[2], pp[ 6]);
1775                 YCbCrtoRGB(cp1[3], pp[ 7]);
1776                 YCbCrtoRGB(cp2[0], pp[ 8]);
1777                 YCbCrtoRGB(cp2[1], pp[ 9]);
1778                 YCbCrtoRGB(cp2[2], pp[10]);
1779                 YCbCrtoRGB(cp2[3], pp[11]);
1780                 YCbCrtoRGB(cp3[0], pp[12]);
1781                 YCbCrtoRGB(cp3[1], pp[13]);
1782                 YCbCrtoRGB(cp3[2], pp[14]);
1783                 YCbCrtoRGB(cp3[3], pp[15]);
1784
1785                 cp += 4, cp1 += 4, cp2 += 4, cp3 += 4;
1786                 pp += 18;
1787             } while (--x);
1788             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1789             pp += fromskew;
1790         }
1791     } else {
1792         while (h > 0) {
1793             for (x = w; x > 0;) {
1794                 int32 Cb = pp[16];
1795                 int32 Cr = pp[17];
1796                 switch (x) {
1797                 default:
1798                     switch (h) {
1799                     default: YCbCrtoRGB(cp3[3], pp[15]); /* FALLTHROUGH */
1800                     case 3:  YCbCrtoRGB(cp2[3], pp[11]); /* FALLTHROUGH */
1801                     case 2:  YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1802                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1803                     }                                    /* FALLTHROUGH */
1804                 case 3:
1805                     switch (h) {
1806                     default: YCbCrtoRGB(cp3[2], pp[14]); /* FALLTHROUGH */
1807                     case 3:  YCbCrtoRGB(cp2[2], pp[10]); /* FALLTHROUGH */
1808                     case 2:  YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1809                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1810                     }                                    /* FALLTHROUGH */
1811                 case 2:
1812                     switch (h) {
1813                     default: YCbCrtoRGB(cp3[1], pp[13]); /* FALLTHROUGH */
1814                     case 3:  YCbCrtoRGB(cp2[1], pp[ 9]); /* FALLTHROUGH */
1815                     case 2:  YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1816                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1817                     }                                    /* FALLTHROUGH */
1818                 case 1:
1819                     switch (h) {
1820                     default: YCbCrtoRGB(cp3[0], pp[12]); /* FALLTHROUGH */
1821                     case 3:  YCbCrtoRGB(cp2[0], pp[ 8]); /* FALLTHROUGH */
1822                     case 2:  YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1823                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1824                     }                                    /* FALLTHROUGH */
1825                 }
1826                 if (x < 4) {
1827                     cp += x; cp1 += x; cp2 += x; cp3 += x;
1828                     x = 0;
1829                 }
1830                 else {
1831                     cp += 4; cp1 += 4; cp2 += 4; cp3 += 4;
1832                     x -= 4;
1833                 }
1834                 pp += 18;
1835             }
1836             if (h <= 4)
1837                 break;
1838             h -= 4;
1839             cp += incr, cp1 += incr, cp2 += incr, cp3 += incr;
1840             pp += fromskew;
1841         }
1842     }
1843 }
1844
1845 /*
1846  * 8-bit packed YCbCr samples w/ 4,2 subsampling => RGB
1847  */
1848 DECLAREContigPutFunc(putcontig8bitYCbCr42tile)
1849 {
1850     uint32* cp1 = cp+w+toskew;
1851     int32 incr = 2*toskew+w;
1852
1853     (void) y;
1854     fromskew = (fromskew * 10) / 4;
1855     if ((h & 3) == 0 && (w & 1) == 0) {
1856         for (; h >= 2; h -= 2) {
1857             x = w>>2;
1858             do {
1859                 int32 Cb = pp[8];
1860                 int32 Cr = pp[9];
1861                 
1862                 YCbCrtoRGB(cp [0], pp[0]);
1863                 YCbCrtoRGB(cp [1], pp[1]);
1864                 YCbCrtoRGB(cp [2], pp[2]);
1865                 YCbCrtoRGB(cp [3], pp[3]);
1866                 YCbCrtoRGB(cp1[0], pp[4]);
1867                 YCbCrtoRGB(cp1[1], pp[5]);
1868                 YCbCrtoRGB(cp1[2], pp[6]);
1869                 YCbCrtoRGB(cp1[3], pp[7]);
1870                 
1871                 cp += 4, cp1 += 4;
1872                 pp += 10;
1873             } while (--x);
1874             cp += incr, cp1 += incr;
1875             pp += fromskew;
1876         }
1877     } else {
1878         while (h > 0) {
1879             for (x = w; x > 0;) {
1880                 int32 Cb = pp[8];
1881                 int32 Cr = pp[9];
1882                 switch (x) {
1883                 default:
1884                     switch (h) {
1885                     default: YCbCrtoRGB(cp1[3], pp[ 7]); /* FALLTHROUGH */
1886                     case 1:  YCbCrtoRGB(cp [3], pp[ 3]); /* FALLTHROUGH */
1887                     }                                    /* FALLTHROUGH */
1888                 case 3:
1889                     switch (h) {
1890                     default: YCbCrtoRGB(cp1[2], pp[ 6]); /* FALLTHROUGH */
1891                     case 1:  YCbCrtoRGB(cp [2], pp[ 2]); /* FALLTHROUGH */
1892                     }                                    /* FALLTHROUGH */
1893                 case 2:
1894                     switch (h) {
1895                     default: YCbCrtoRGB(cp1[1], pp[ 5]); /* FALLTHROUGH */
1896                     case 1:  YCbCrtoRGB(cp [1], pp[ 1]); /* FALLTHROUGH */
1897                     }                                    /* FALLTHROUGH */
1898                 case 1:
1899                     switch (h) {
1900                     default: YCbCrtoRGB(cp1[0], pp[ 4]); /* FALLTHROUGH */
1901                     case 1:  YCbCrtoRGB(cp [0], pp[ 0]); /* FALLTHROUGH */
1902                     }                                    /* FALLTHROUGH */
1903                 }
1904                 if (x < 4) {
1905                     cp += x; cp1 += x;
1906                     x = 0;
1907                 }
1908                 else {
1909                     cp += 4; cp1 += 4;
1910                     x -= 4;
1911                 }
1912                 pp += 10;
1913             }
1914             if (h <= 2)
1915                 break;
1916             h -= 2;
1917             cp += incr, cp1 += incr;
1918             pp += fromskew;
1919         }
1920     }
1921 }
1922
1923 /*
1924  * 8-bit packed YCbCr samples w/ 4,1 subsampling => RGB
1925  */
1926 DECLAREContigPutFunc(putcontig8bitYCbCr41tile)
1927 {
1928     (void) y;
1929     /* XXX adjust fromskew */
1930     do {
1931         x = w>>2;
1932         do {
1933             int32 Cb = pp[4];
1934             int32 Cr = pp[5];
1935
1936             YCbCrtoRGB(cp [0], pp[0]);
1937             YCbCrtoRGB(cp [1], pp[1]);
1938             YCbCrtoRGB(cp [2], pp[2]);
1939             YCbCrtoRGB(cp [3], pp[3]);
1940
1941             cp += 4;
1942             pp += 6;
1943         } while (--x);
1944
1945         if( (w&3) != 0 )
1946         {
1947             int32 Cb = pp[4];
1948             int32 Cr = pp[5];
1949
1950             switch( (w&3) ) {
1951               case 3: YCbCrtoRGB(cp [2], pp[2]);
1952               case 2: YCbCrtoRGB(cp [1], pp[1]);
1953               case 1: YCbCrtoRGB(cp [0], pp[0]);
1954               case 0: break;
1955             }
1956
1957             cp += (w&3);
1958             pp += 6;
1959         }
1960
1961         cp += toskew;
1962         pp += fromskew;
1963     } while (--h);
1964
1965 }
1966
1967 /*
1968  * 8-bit packed YCbCr samples w/ 2,2 subsampling => RGB
1969  */
1970 DECLAREContigPutFunc(putcontig8bitYCbCr22tile)
1971 {
1972         uint32* cp2;
1973         int32 incr = 2*toskew+w;
1974         (void) y;
1975         fromskew = (fromskew / 2) * 6;
1976         cp2 = cp+w+toskew;
1977         while (h>=2) {
1978                 x = w;
1979                 while (x>=2) {
1980                         uint32 Cb = pp[4];
1981                         uint32 Cr = pp[5];
1982                         YCbCrtoRGB(cp[0], pp[0]);
1983                         YCbCrtoRGB(cp[1], pp[1]);
1984                         YCbCrtoRGB(cp2[0], pp[2]);
1985                         YCbCrtoRGB(cp2[1], pp[3]);
1986                         cp += 2;
1987                         cp2 += 2;
1988                         pp += 6;
1989                         x -= 2;
1990                 }
1991                 if (x==1) {
1992                         uint32 Cb = pp[4];
1993                         uint32 Cr = pp[5];
1994                         YCbCrtoRGB(cp[0], pp[0]);
1995                         YCbCrtoRGB(cp2[0], pp[2]);
1996                         cp ++ ;
1997                         cp2 ++ ;
1998                         pp += 6;
1999                 }
2000                 cp += incr;
2001                 cp2 += incr;
2002                 pp += fromskew;
2003                 h-=2;
2004         }
2005         if (h==1) {
2006                 x = w;
2007                 while (x>=2) {
2008                         uint32 Cb = pp[4];
2009                         uint32 Cr = pp[5];
2010                         YCbCrtoRGB(cp[0], pp[0]);
2011                         YCbCrtoRGB(cp[1], pp[1]);
2012                         cp += 2;
2013                         cp2 += 2;
2014                         pp += 6;
2015                         x -= 2;
2016                 }
2017                 if (x==1) {
2018                         uint32 Cb = pp[4];
2019                         uint32 Cr = pp[5];
2020                         YCbCrtoRGB(cp[0], pp[0]);
2021                 }
2022         }
2023 }
2024
2025 /*
2026  * 8-bit packed YCbCr samples w/ 2,1 subsampling => RGB
2027  */
2028 DECLAREContigPutFunc(putcontig8bitYCbCr21tile)
2029 {
2030         (void) y;
2031         fromskew = (fromskew * 4) / 2;
2032         do {
2033                 x = w>>1;
2034                 do {
2035                         int32 Cb = pp[2];
2036                         int32 Cr = pp[3];
2037
2038                         YCbCrtoRGB(cp[0], pp[0]);
2039                         YCbCrtoRGB(cp[1], pp[1]);
2040
2041                         cp += 2;
2042                         pp += 4;
2043                 } while (--x);
2044
2045                 if( (w&1) != 0 )
2046                 {
2047                         int32 Cb = pp[2];
2048                         int32 Cr = pp[3];
2049
2050                         YCbCrtoRGB(cp[0], pp[0]);
2051
2052                         cp += 1;
2053                         pp += 4;
2054                 }
2055
2056                 cp += toskew;
2057                 pp += fromskew;
2058         } while (--h);
2059 }
2060
2061 /*
2062  * 8-bit packed YCbCr samples w/ 1,2 subsampling => RGB
2063  */
2064 DECLAREContigPutFunc(putcontig8bitYCbCr12tile)
2065 {
2066         uint32* cp2;
2067         int32 incr = 2*toskew+w;
2068         (void) y;
2069         fromskew = (fromskew / 2) * 4;
2070         cp2 = cp+w+toskew;
2071         while (h>=2) {
2072                 x = w;
2073                 do {
2074                         uint32 Cb = pp[2];
2075                         uint32 Cr = pp[3];
2076                         YCbCrtoRGB(cp[0], pp[0]);
2077                         YCbCrtoRGB(cp2[0], pp[1]);
2078                         cp ++;
2079                         cp2 ++;
2080                         pp += 4;
2081                 } while (--x);
2082                 cp += incr;
2083                 cp2 += incr;
2084                 pp += fromskew;
2085                 h-=2;
2086         }
2087         if (h==1) {
2088                 x = w;
2089                 do {
2090                         uint32 Cb = pp[2];
2091                         uint32 Cr = pp[3];
2092                         YCbCrtoRGB(cp[0], pp[0]);
2093                         cp ++;
2094                         pp += 4;
2095                 } while (--x);
2096         }
2097 }
2098
2099 /*
2100  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2101  */
2102 DECLAREContigPutFunc(putcontig8bitYCbCr11tile)
2103 {
2104         (void) y;
2105         fromskew *= 3;
2106         do {
2107                 x = w; /* was x = w>>1; patched 2000/09/25 warmerda@home.com */
2108                 do {
2109                         int32 Cb = pp[1];
2110                         int32 Cr = pp[2];
2111
2112                         YCbCrtoRGB(*cp++, pp[0]);
2113
2114                         pp += 3;
2115                 } while (--x);
2116                 cp += toskew;
2117                 pp += fromskew;
2118         } while (--h);
2119 }
2120
2121 /*
2122  * 8-bit packed YCbCr samples w/ no subsampling => RGB
2123  */
2124 DECLARESepPutFunc(putseparate8bitYCbCr11tile)
2125 {
2126         (void) y;
2127         (void) a;
2128         /* TODO: naming of input vars is still off, change obfuscating declaration inside define, or resolve obfuscation */
2129         while (h-- > 0) {
2130                 x = w;
2131                 do {
2132                         uint32 dr, dg, db;
2133                         TIFFYCbCrtoRGB(img->ycbcr,*r++,*g++,*b++,&dr,&dg,&db);
2134                         *cp++ = PACK(dr,dg,db);
2135                 } while (--x);
2136                 SKEW(r, g, b, fromskew);
2137                 cp += toskew;
2138         }
2139 }
2140 #undef YCbCrtoRGB
2141
2142 static int
2143 initYCbCrConversion(TIFFRGBAImage* img)
2144 {
2145         static const char module[] = "initYCbCrConversion";
2146
2147         float *luma, *refBlackWhite;
2148
2149         if (img->ycbcr == NULL) {
2150                 img->ycbcr = (TIFFYCbCrToRGB*) _TIFFmalloc(
2151                     TIFFroundup_32(sizeof (TIFFYCbCrToRGB), sizeof (long))  
2152                     + 4*256*sizeof (TIFFRGBValue)
2153                     + 2*256*sizeof (int)
2154                     + 3*256*sizeof (int32)
2155                     );
2156                 if (img->ycbcr == NULL) {
2157                         TIFFErrorExt(img->tif->tif_clientdata, module,
2158                             "No space for YCbCr->RGB conversion state");
2159                         return (0);
2160                 }
2161         }
2162
2163         TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRCOEFFICIENTS, &luma);
2164         TIFFGetFieldDefaulted(img->tif, TIFFTAG_REFERENCEBLACKWHITE,
2165             &refBlackWhite);
2166         if (TIFFYCbCrToRGBInit(img->ycbcr, luma, refBlackWhite) < 0)
2167                 return(0);
2168         return (1);
2169 }
2170
2171 static tileContigRoutine
2172 initCIELabConversion(TIFFRGBAImage* img)
2173 {
2174         static const char module[] = "initCIELabConversion";
2175
2176         float   *whitePoint;
2177         float   refWhite[3];
2178
2179         if (!img->cielab) {
2180                 img->cielab = (TIFFCIELabToRGB *)
2181                         _TIFFmalloc(sizeof(TIFFCIELabToRGB));
2182                 if (!img->cielab) {
2183                         TIFFErrorExt(img->tif->tif_clientdata, module,
2184                             "No space for CIE L*a*b*->RGB conversion state.");
2185                         return NULL;
2186                 }
2187         }
2188
2189         TIFFGetFieldDefaulted(img->tif, TIFFTAG_WHITEPOINT, &whitePoint);
2190         refWhite[1] = 100.0F;
2191         refWhite[0] = whitePoint[0] / whitePoint[1] * refWhite[1];
2192         refWhite[2] = (1.0F - whitePoint[0] - whitePoint[1])
2193                       / whitePoint[1] * refWhite[1];
2194         if (TIFFCIELabToRGBInit(img->cielab, &display_sRGB, refWhite) < 0) {
2195                 TIFFErrorExt(img->tif->tif_clientdata, module,
2196                     "Failed to initialize CIE L*a*b*->RGB conversion state.");
2197                 _TIFFfree(img->cielab);
2198                 return NULL;
2199         }
2200
2201         return putcontig8bitCIELab;
2202 }
2203
2204 /*
2205  * Greyscale images with less than 8 bits/sample are handled
2206  * with a table to avoid lots of shifts and masks.  The table
2207  * is setup so that put*bwtile (below) can retrieve 8/bitspersample
2208  * pixel values simply by indexing into the table with one
2209  * number.
2210  */
2211 static int
2212 makebwmap(TIFFRGBAImage* img)
2213 {
2214     TIFFRGBValue* Map = img->Map;
2215     int bitspersample = img->bitspersample;
2216     int nsamples = 8 / bitspersample;
2217     int i;
2218     uint32* p;
2219
2220     if( nsamples == 0 )
2221         nsamples = 1;
2222
2223     img->BWmap = (uint32**) _TIFFmalloc(
2224         256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2225     if (img->BWmap == NULL) {
2226                 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for B&W mapping table");
2227                 return (0);
2228     }
2229     p = (uint32*)(img->BWmap + 256);
2230     for (i = 0; i < 256; i++) {
2231         TIFFRGBValue c;
2232         img->BWmap[i] = p;
2233         switch (bitspersample) {
2234 #define GREY(x) c = Map[x]; *p++ = PACK(c,c,c);
2235         case 1:
2236             GREY(i>>7);
2237             GREY((i>>6)&1);
2238             GREY((i>>5)&1);
2239             GREY((i>>4)&1);
2240             GREY((i>>3)&1);
2241             GREY((i>>2)&1);
2242             GREY((i>>1)&1);
2243             GREY(i&1);
2244             break;
2245         case 2:
2246             GREY(i>>6);
2247             GREY((i>>4)&3);
2248             GREY((i>>2)&3);
2249             GREY(i&3);
2250             break;
2251         case 4:
2252             GREY(i>>4);
2253             GREY(i&0xf);
2254             break;
2255         case 8:
2256         case 16:
2257             GREY(i);
2258             break;
2259         }
2260 #undef  GREY
2261     }
2262     return (1);
2263 }
2264
2265 /*
2266  * Construct a mapping table to convert from the range
2267  * of the data samples to [0,255] --for display.  This
2268  * process also handles inverting B&W images when needed.
2269  */ 
2270 static int
2271 setupMap(TIFFRGBAImage* img)
2272 {
2273     int32 x, range;
2274
2275     range = (int32)((1L<<img->bitspersample)-1);
2276     
2277     /* treat 16 bit the same as eight bit */
2278     if( img->bitspersample == 16 )
2279         range = (int32) 255;
2280
2281     img->Map = (TIFFRGBValue*) _TIFFmalloc((range+1) * sizeof (TIFFRGBValue));
2282     if (img->Map == NULL) {
2283                 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif),
2284                         "No space for photometric conversion table");
2285                 return (0);
2286     }
2287     if (img->photometric == PHOTOMETRIC_MINISWHITE) {
2288         for (x = 0; x <= range; x++)
2289             img->Map[x] = (TIFFRGBValue) (((range - x) * 255) / range);
2290     } else {
2291         for (x = 0; x <= range; x++)
2292             img->Map[x] = (TIFFRGBValue) ((x * 255) / range);
2293     }
2294     if (img->bitspersample <= 16 &&
2295         (img->photometric == PHOTOMETRIC_MINISBLACK ||
2296          img->photometric == PHOTOMETRIC_MINISWHITE)) {
2297         /*
2298          * Use photometric mapping table to construct
2299          * unpacking tables for samples <= 8 bits.
2300          */
2301         if (!makebwmap(img))
2302             return (0);
2303         /* no longer need Map, free it */
2304         _TIFFfree(img->Map), img->Map = NULL;
2305     }
2306     return (1);
2307 }
2308
2309 static int
2310 checkcmap(TIFFRGBAImage* img)
2311 {
2312     uint16* r = img->redcmap;
2313     uint16* g = img->greencmap;
2314     uint16* b = img->bluecmap;
2315     long n = 1L<<img->bitspersample;
2316
2317     while (n-- > 0)
2318         if (*r++ >= 256 || *g++ >= 256 || *b++ >= 256)
2319             return (16);
2320     return (8);
2321 }
2322
2323 static void
2324 cvtcmap(TIFFRGBAImage* img)
2325 {
2326     uint16* r = img->redcmap;
2327     uint16* g = img->greencmap;
2328     uint16* b = img->bluecmap;
2329     long i;
2330
2331     for (i = (1L<<img->bitspersample)-1; i >= 0; i--) {
2332 #define CVT(x)          ((uint16)((x)>>8))
2333         r[i] = CVT(r[i]);
2334         g[i] = CVT(g[i]);
2335         b[i] = CVT(b[i]);
2336 #undef  CVT
2337     }
2338 }
2339
2340 /*
2341  * Palette images with <= 8 bits/sample are handled
2342  * with a table to avoid lots of shifts and masks.  The table
2343  * is setup so that put*cmaptile (below) can retrieve 8/bitspersample
2344  * pixel values simply by indexing into the table with one
2345  * number.
2346  */
2347 static int
2348 makecmap(TIFFRGBAImage* img)
2349 {
2350     int bitspersample = img->bitspersample;
2351     int nsamples = 8 / bitspersample;
2352     uint16* r = img->redcmap;
2353     uint16* g = img->greencmap;
2354     uint16* b = img->bluecmap;
2355     uint32 *p;
2356     int i;
2357
2358     img->PALmap = (uint32**) _TIFFmalloc(
2359         256*sizeof (uint32 *)+(256*nsamples*sizeof(uint32)));
2360     if (img->PALmap == NULL) {
2361                 TIFFErrorExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "No space for Palette mapping table");
2362                 return (0);
2363         }
2364     p = (uint32*)(img->PALmap + 256);
2365     for (i = 0; i < 256; i++) {
2366         TIFFRGBValue c;
2367         img->PALmap[i] = p;
2368 #define CMAP(x) c = (TIFFRGBValue) x; *p++ = PACK(r[c]&0xff, g[c]&0xff, b[c]&0xff);
2369         switch (bitspersample) {
2370         case 1:
2371             CMAP(i>>7);
2372             CMAP((i>>6)&1);
2373             CMAP((i>>5)&1);
2374             CMAP((i>>4)&1);
2375             CMAP((i>>3)&1);
2376             CMAP((i>>2)&1);
2377             CMAP((i>>1)&1);
2378             CMAP(i&1);
2379             break;
2380         case 2:
2381             CMAP(i>>6);
2382             CMAP((i>>4)&3);
2383             CMAP((i>>2)&3);
2384             CMAP(i&3);
2385             break;
2386         case 4:
2387             CMAP(i>>4);
2388             CMAP(i&0xf);
2389             break;
2390         case 8:
2391             CMAP(i);
2392             break;
2393         }
2394 #undef CMAP
2395     }
2396     return (1);
2397 }
2398
2399 /* 
2400  * Construct any mapping table used
2401  * by the associated put routine.
2402  */
2403 static int
2404 buildMap(TIFFRGBAImage* img)
2405 {
2406     switch (img->photometric) {
2407     case PHOTOMETRIC_RGB:
2408     case PHOTOMETRIC_YCBCR:
2409     case PHOTOMETRIC_SEPARATED:
2410         if (img->bitspersample == 8)
2411             break;
2412         /* fall thru... */
2413     case PHOTOMETRIC_MINISBLACK:
2414     case PHOTOMETRIC_MINISWHITE:
2415         if (!setupMap(img))
2416             return (0);
2417         break;
2418     case PHOTOMETRIC_PALETTE:
2419         /*
2420          * Convert 16-bit colormap to 8-bit (unless it looks
2421          * like an old-style 8-bit colormap).
2422          */
2423         if (checkcmap(img) == 16)
2424             cvtcmap(img);
2425         else
2426             TIFFWarningExt(img->tif->tif_clientdata, TIFFFileName(img->tif), "Assuming 8-bit colormap");
2427         /*
2428          * Use mapping table and colormap to construct
2429          * unpacking tables for samples < 8 bits.
2430          */
2431         if (img->bitspersample <= 8 && !makecmap(img))
2432             return (0);
2433         break;
2434     }
2435     return (1);
2436 }
2437
2438 /*
2439  * Select the appropriate conversion routine for packed data.
2440  */
2441 static int
2442 PickContigCase(TIFFRGBAImage* img)
2443 {
2444         img->get = TIFFIsTiled(img->tif) ? gtTileContig : gtStripContig;
2445         img->put.contig = NULL;
2446         switch (img->photometric) {
2447                 case PHOTOMETRIC_RGB:
2448                         switch (img->bitspersample) {
2449                                 case 8:
2450                                         if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2451                                                 img->put.contig = putRGBAAcontig8bittile;
2452                                         else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2453                                         {
2454                                                 if (BuildMapUaToAa(img))
2455                                                         img->put.contig = putRGBUAcontig8bittile;
2456                                         }
2457                                         else
2458                                                 img->put.contig = putRGBcontig8bittile;
2459                                         break;
2460                                 case 16:
2461                                         if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2462                                         {
2463                                                 if (BuildMapBitdepth16To8(img))
2464                                                         img->put.contig = putRGBAAcontig16bittile;
2465                                         }
2466                                         else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2467                                         {
2468                                                 if (BuildMapBitdepth16To8(img) &&
2469                                                     BuildMapUaToAa(img))
2470                                                         img->put.contig = putRGBUAcontig16bittile;
2471                                         }
2472                                         else
2473                                         {
2474                                                 if (BuildMapBitdepth16To8(img))
2475                                                         img->put.contig = putRGBcontig16bittile;
2476                                         }
2477                                         break;
2478                         }
2479                         break;
2480                 case PHOTOMETRIC_SEPARATED:
2481                         if (buildMap(img)) {
2482                                 if (img->bitspersample == 8) {
2483                                         if (!img->Map)
2484                                                 img->put.contig = putRGBcontig8bitCMYKtile;
2485                                         else
2486                                                 img->put.contig = putRGBcontig8bitCMYKMaptile;
2487                                 }
2488                         }
2489                         break;
2490                 case PHOTOMETRIC_PALETTE:
2491                         if (buildMap(img)) {
2492                                 switch (img->bitspersample) {
2493                                         case 8:
2494                                                 img->put.contig = put8bitcmaptile;
2495                                                 break;
2496                                         case 4:
2497                                                 img->put.contig = put4bitcmaptile;
2498                                                 break;
2499                                         case 2:
2500                                                 img->put.contig = put2bitcmaptile;
2501                                                 break;
2502                                         case 1:
2503                                                 img->put.contig = put1bitcmaptile;
2504                                                 break;
2505                                 }
2506                         }
2507                         break;
2508                 case PHOTOMETRIC_MINISWHITE:
2509                 case PHOTOMETRIC_MINISBLACK:
2510                         if (buildMap(img)) {
2511                                 switch (img->bitspersample) {
2512                                         case 16:
2513                                                 img->put.contig = put16bitbwtile;
2514                                                 break;
2515                                         case 8:
2516                                                 if (img->alpha && img->samplesperpixel == 2)
2517                                                         img->put.contig = putagreytile;
2518                                                 else
2519                                                         img->put.contig = putgreytile;
2520                                                 break;
2521                                         case 4:
2522                                                 img->put.contig = put4bitbwtile;
2523                                                 break;
2524                                         case 2:
2525                                                 img->put.contig = put2bitbwtile;
2526                                                 break;
2527                                         case 1:
2528                                                 img->put.contig = put1bitbwtile;
2529                                                 break;
2530                                 }
2531                         }
2532                         break;
2533                 case PHOTOMETRIC_YCBCR:
2534                         if ((img->bitspersample==8) && (img->samplesperpixel==3))
2535                         {
2536                                 if (initYCbCrConversion(img)!=0)
2537                                 {
2538                                         /*
2539                                          * The 6.0 spec says that subsampling must be
2540                                          * one of 1, 2, or 4, and that vertical subsampling
2541                                          * must always be <= horizontal subsampling; so
2542                                          * there are only a few possibilities and we just
2543                                          * enumerate the cases.
2544                                          * Joris: added support for the [1,2] case, nonetheless, to accomodate
2545                                          * some OJPEG files
2546                                          */
2547                                         uint16 SubsamplingHor;
2548                                         uint16 SubsamplingVer;
2549                                         TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &SubsamplingHor, &SubsamplingVer);
2550                                         switch ((SubsamplingHor<<4)|SubsamplingVer) {
2551                                                 case 0x44:
2552                                                         img->put.contig = putcontig8bitYCbCr44tile;
2553                                                         break;
2554                                                 case 0x42:
2555                                                         img->put.contig = putcontig8bitYCbCr42tile;
2556                                                         break;
2557                                                 case 0x41:
2558                                                         img->put.contig = putcontig8bitYCbCr41tile;
2559                                                         break;
2560                                                 case 0x22:
2561                                                         img->put.contig = putcontig8bitYCbCr22tile;
2562                                                         break;
2563                                                 case 0x21:
2564                                                         img->put.contig = putcontig8bitYCbCr21tile;
2565                                                         break;
2566                                                 case 0x12:
2567                                                         img->put.contig = putcontig8bitYCbCr12tile;
2568                                                         break;
2569                                                 case 0x11:
2570                                                         img->put.contig = putcontig8bitYCbCr11tile;
2571                                                         break;
2572                                         }
2573                                 }
2574                         }
2575                         break;
2576                 case PHOTOMETRIC_CIELAB:
2577                         if (buildMap(img)) {
2578                                 if (img->bitspersample == 8)
2579                                         img->put.contig = initCIELabConversion(img);
2580                                 break;
2581                         }
2582         }
2583         return ((img->get!=NULL) && (img->put.contig!=NULL));
2584 }
2585
2586 /*
2587  * Select the appropriate conversion routine for unpacked data.
2588  *
2589  * NB: we assume that unpacked single channel data is directed
2590  *       to the "packed routines.
2591  */
2592 static int
2593 PickSeparateCase(TIFFRGBAImage* img)
2594 {
2595         img->get = TIFFIsTiled(img->tif) ? gtTileSeparate : gtStripSeparate;
2596         img->put.separate = NULL;
2597         switch (img->photometric) {
2598         case PHOTOMETRIC_MINISWHITE:
2599         case PHOTOMETRIC_MINISBLACK:
2600                 /* greyscale images processed pretty much as RGB by gtTileSeparate */
2601         case PHOTOMETRIC_RGB:
2602                 switch (img->bitspersample) {
2603                 case 8:
2604                         if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2605                                 img->put.separate = putRGBAAseparate8bittile;
2606                         else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2607                         {
2608                                 if (BuildMapUaToAa(img))
2609                                         img->put.separate = putRGBUAseparate8bittile;
2610                         }
2611                         else
2612                                 img->put.separate = putRGBseparate8bittile;
2613                         break;
2614                 case 16:
2615                         if (img->alpha == EXTRASAMPLE_ASSOCALPHA)
2616                         {
2617                                 if (BuildMapBitdepth16To8(img))
2618                                         img->put.separate = putRGBAAseparate16bittile;
2619                         }
2620                         else if (img->alpha == EXTRASAMPLE_UNASSALPHA)
2621                         {
2622                                 if (BuildMapBitdepth16To8(img) &&
2623                                     BuildMapUaToAa(img))
2624                                         img->put.separate = putRGBUAseparate16bittile;
2625                         }
2626                         else
2627                         {
2628                                 if (BuildMapBitdepth16To8(img))
2629                                         img->put.separate = putRGBseparate16bittile;
2630                         }
2631                         break;
2632                 }
2633                 break;
2634         case PHOTOMETRIC_SEPARATED:
2635                 if (img->bitspersample == 8 && img->samplesperpixel == 4)
2636                 {
2637                         img->alpha = 1; // Not alpha, but seems like the only way to get 4th band
2638                         img->put.separate = putCMYKseparate8bittile;
2639                 }
2640                 break;
2641         case PHOTOMETRIC_YCBCR:
2642                 if ((img->bitspersample==8) && (img->samplesperpixel==3))
2643                 {
2644                         if (initYCbCrConversion(img)!=0)
2645                         {
2646                                 uint16 hs, vs;
2647                                 TIFFGetFieldDefaulted(img->tif, TIFFTAG_YCBCRSUBSAMPLING, &hs, &vs);
2648                                 switch ((hs<<4)|vs) {
2649                                 case 0x11:
2650                                         img->put.separate = putseparate8bitYCbCr11tile;
2651                                         break;
2652                                         /* TODO: add other cases here */
2653                                 }
2654                         }
2655                 }
2656                 break;
2657         }
2658         return ((img->get!=NULL) && (img->put.separate!=NULL));
2659 }
2660
2661 static int
2662 BuildMapUaToAa(TIFFRGBAImage* img)
2663 {
2664         static const char module[]="BuildMapUaToAa";
2665         uint8* m;
2666         uint16 na,nv;
2667         assert(img->UaToAa==NULL);
2668         img->UaToAa=_TIFFmalloc(65536);
2669         if (img->UaToAa==NULL)
2670         {
2671                 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2672                 return(0);
2673         }
2674         m=img->UaToAa;
2675         for (na=0; na<256; na++)
2676         {
2677                 for (nv=0; nv<256; nv++)
2678                         *m++=(nv*na+127)/255;
2679         }
2680         return(1);
2681 }
2682
2683 static int
2684 BuildMapBitdepth16To8(TIFFRGBAImage* img)
2685 {
2686         static const char module[]="BuildMapBitdepth16To8";
2687         uint8* m;
2688         uint32 n;
2689         assert(img->Bitdepth16To8==NULL);
2690         img->Bitdepth16To8=_TIFFmalloc(65536);
2691         if (img->Bitdepth16To8==NULL)
2692         {
2693                 TIFFErrorExt(img->tif->tif_clientdata,module,"Out of memory");
2694                 return(0);
2695         }
2696         m=img->Bitdepth16To8;
2697         for (n=0; n<65536; n++)
2698                 *m++=(n+128)/257;
2699         return(1);
2700 }
2701
2702
2703 /*
2704  * Read a whole strip off data from the file, and convert to RGBA form.
2705  * If this is the last strip, then it will only contain the portion of
2706  * the strip that is actually within the image space.  The result is
2707  * organized in bottom to top form.
2708  */
2709
2710
2711 int
2712 TIFFReadRGBAStrip(TIFF* tif, uint32 row, uint32 * raster )
2713
2714 {
2715     char        emsg[1024] = "";
2716     TIFFRGBAImage img;
2717     int         ok;
2718     uint32      rowsperstrip, rows_to_read;
2719
2720     if( TIFFIsTiled( tif ) )
2721     {
2722                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2723                   "Can't use TIFFReadRGBAStrip() with tiled file.");
2724         return (0);
2725     }
2726     
2727     TIFFGetFieldDefaulted(tif, TIFFTAG_ROWSPERSTRIP, &rowsperstrip);
2728     if( (row % rowsperstrip) != 0 )
2729     {
2730                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2731                                 "Row passed to TIFFReadRGBAStrip() must be first in a strip.");
2732                 return (0);
2733     }
2734
2735     if (TIFFRGBAImageOK(tif, emsg) && TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2736
2737         img.row_offset = row;
2738         img.col_offset = 0;
2739
2740         if( row + rowsperstrip > img.height )
2741             rows_to_read = img.height - row;
2742         else
2743             rows_to_read = rowsperstrip;
2744         
2745         ok = TIFFRGBAImageGet(&img, raster, img.width, rows_to_read );
2746         
2747         TIFFRGBAImageEnd(&img);
2748     } else {
2749                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2750                 ok = 0;
2751     }
2752     
2753     return (ok);
2754 }
2755
2756 /*
2757  * Read a whole tile off data from the file, and convert to RGBA form.
2758  * The returned RGBA data is organized from bottom to top of tile,
2759  * and may include zeroed areas if the tile extends off the image.
2760  */
2761
2762 int
2763 TIFFReadRGBATile(TIFF* tif, uint32 col, uint32 row, uint32 * raster)
2764
2765 {
2766     char        emsg[1024] = "";
2767     TIFFRGBAImage img;
2768     int         ok;
2769     uint32      tile_xsize, tile_ysize;
2770     uint32      read_xsize, read_ysize;
2771     uint32      i_row;
2772
2773     /*
2774      * Verify that our request is legal - on a tile file, and on a
2775      * tile boundary.
2776      */
2777     
2778     if( !TIFFIsTiled( tif ) )
2779     {
2780                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2781                                   "Can't use TIFFReadRGBATile() with stripped file.");
2782                 return (0);
2783     }
2784     
2785     TIFFGetFieldDefaulted(tif, TIFFTAG_TILEWIDTH, &tile_xsize);
2786     TIFFGetFieldDefaulted(tif, TIFFTAG_TILELENGTH, &tile_ysize);
2787     if( (col % tile_xsize) != 0 || (row % tile_ysize) != 0 )
2788     {
2789                 TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif),
2790                   "Row/col passed to TIFFReadRGBATile() must be top"
2791                   "left corner of a tile.");
2792         return (0);
2793     }
2794
2795     /*
2796      * Setup the RGBA reader.
2797      */
2798     
2799     if (!TIFFRGBAImageOK(tif, emsg) 
2800         || !TIFFRGBAImageBegin(&img, tif, 0, emsg)) {
2801             TIFFErrorExt(tif->tif_clientdata, TIFFFileName(tif), "%s", emsg);
2802             return( 0 );
2803     }
2804
2805     /*
2806      * The TIFFRGBAImageGet() function doesn't allow us to get off the
2807      * edge of the image, even to fill an otherwise valid tile.  So we
2808      * figure out how much we can read, and fix up the tile buffer to
2809      * a full tile configuration afterwards.
2810      */
2811
2812     if( row + tile_ysize > img.height )
2813         read_ysize = img.height - row;
2814     else
2815         read_ysize = tile_ysize;
2816     
2817     if( col + tile_xsize > img.width )
2818         read_xsize = img.width - col;
2819     else
2820         read_xsize = tile_xsize;
2821
2822     /*
2823      * Read the chunk of imagery.
2824      */
2825     
2826     img.row_offset = row;
2827     img.col_offset = col;
2828
2829     ok = TIFFRGBAImageGet(&img, raster, read_xsize, read_ysize );
2830         
2831     TIFFRGBAImageEnd(&img);
2832
2833     /*
2834      * If our read was incomplete we will need to fix up the tile by
2835      * shifting the data around as if a full tile of data is being returned.
2836      *
2837      * This is all the more complicated because the image is organized in
2838      * bottom to top format. 
2839      */
2840
2841     if( read_xsize == tile_xsize && read_ysize == tile_ysize )
2842         return( ok );
2843
2844     for( i_row = 0; i_row < read_ysize; i_row++ ) {
2845         memmove( raster + (tile_ysize - i_row - 1) * tile_xsize,
2846                  raster + (read_ysize - i_row - 1) * read_xsize,
2847                  read_xsize * sizeof(uint32) );
2848         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize+read_xsize,
2849                      0, sizeof(uint32) * (tile_xsize - read_xsize) );
2850     }
2851
2852     for( i_row = read_ysize; i_row < tile_ysize; i_row++ ) {
2853         _TIFFmemset( raster + (tile_ysize - i_row - 1) * tile_xsize,
2854                      0, sizeof(uint32) * tile_xsize );
2855     }
2856
2857     return (ok);
2858 }
2859
2860 /* vim: set ts=8 sts=8 sw=8 noet: */
2861 /*
2862  * Local Variables:
2863  * mode: c
2864  * c-basic-offset: 8
2865  * fill-column: 78
2866  * End:
2867  */