Diverses.
authorFlorian Forster <octo@leeloo.octo.it>
Sun, 20 Feb 2011 08:31:21 +0000 (09:31 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Sun, 20 Feb 2011 08:31:21 +0000 (09:31 +0100)
diplomarbeit.tex

index c5d64e5..b5d8a09 100644 (file)
@@ -41,6 +41,7 @@
 \newcommand{\ps}[1]{\ensuremath{\operatorname{PS}(#1)}}
 \newcommand{\oem}[1]{\ensuremath{\operatorname{OEM}(#1)}}
 \newcommand{\bm}[1]{\ensuremath{\operatorname{BM}(#1)}}
 \newcommand{\ps}[1]{\ensuremath{\operatorname{PS}(#1)}}
 \newcommand{\oem}[1]{\ensuremath{\operatorname{OEM}(#1)}}
 \newcommand{\bm}[1]{\ensuremath{\operatorname{BM}(#1)}}
+\newcommand{\oet}[1]{\ensuremath{\operatorname{OET}(#1)}}
 
 \newtheorem{definition}{Definition}
 \newtheorem{satz}{Satz}
 
 \newtheorem{definition}{Definition}
 \newtheorem{satz}{Satz}
@@ -433,7 +434,7 @@ Schichten.
 
 Das Sortiernetzwerk basiert auf einem Komparatornetzwerk, welches zwei
 sortierte Listen zusammenfügen (englisch: \textit{to~merge}) kann. Dieser
 
 Das Sortiernetzwerk basiert auf einem Komparatornetzwerk, welches zwei
 sortierte Listen zusammenfügen (englisch: \textit{to~merge}) kann. Dieser
-\emph{„bitoner Mischer“} (englisch: \textit{bitonic merger}) genannte Baustein
+\emph{„bitone Mischer“} (englisch: \textit{bitonic merger}) genannte Baustein
 verleiht dem Sortiernetzwerk seinen Namen.
 
 Da das Sortiernetzwerk rekursiv definiert ist, betrachten wir hier nur die
 verleiht dem Sortiernetzwerk seinen Namen.
 
 Da das Sortiernetzwerk rekursiv definiert ist, betrachten wir hier nur die
@@ -442,20 +443,20 @@ Es ist jedoch möglich das Sortiernetzwerk für beliebige~$n$ zu erzeugen.
 
 \subsubsection{Der bitone Mischer}\label{sect:der_bitone_mischer}
 
 
 \subsubsection{Der bitone Mischer}\label{sect:der_bitone_mischer}
 
-Das \emph{bitone Mergesort-Netzwerk} basiert auf dem sogenannten \emph{bitonen
-Mischer} $\operatorname{BM}(n)$, einem Kom\-parator-Netzwerk, das eine beliebige
-\emph{bitone Folge} in eine sortierte Listen umordnen kann. Eine \emph{bitone
-Folge} ist eine monoton steigende Folge gefolgt von einer monoton absteigenden
-Folge, oder ein zyklischer Shift davon. Abbildung~\ref{fig:beispiel-biton}
-zeigt die vier prinzipiellen Möglichkeiten die durch zyklische Shifts
-entstehen können. Die wichtigsten Varianten für das \emph{bitone
-Mergesort-Netzwerk} zeigen die Abbildungen~\ref{fig:beispiel-biton-0}
-und~\ref{fig:beispiel-biton-1}. Sie erhält man, wenn man eine aufsteigend und
-eine absteigend sortierte Liste aneinanderhängt. Bei den anderen beiden Formen
-ist wichtig zu beachten, dass das letzte Element nicht größer
-(Abbildung~\ref{fig:beispiel-biton-2}) bzw. kleiner
-(Abbildung~\ref{fig:beispiel-biton-3}) als das erste Element der Folge sein
-darf.
+Das \emph{bitone Mergesort}-Netzwerk basiert auf dem sogenannten \emph{bitonen
+Mischer} $\operatorname{BM}(n)$, einem Kom\-parator-Netzwerk, das eine
+beliebige \emph{bitone Folge} in eine sortierte Listen umordnen kann. Eine
+\emph{bitone Folge} ist eine monoton steigende Folge gefolgt von einer monoton
+absteigenden Folge, oder ein zyklischer Shift davon.
+Abbildung~\ref{fig:beispiel-biton} zeigt die vier prinzipiellen Möglichkeiten
+die durch zyklische Shifts entstehen können. Die wichtigsten Varianten für das
+\emph{bitone Mergesort}-Netzwerk zeigen die
+Abbildungen~\ref{fig:beispiel-biton-0} und~\ref{fig:beispiel-biton-1}. Sie
+erhält man, wenn man eine aufsteigend und eine absteigend sortierte Liste
+aneinanderhängt. Bei den anderen beiden Formen ist wichtig zu beachten, dass
+das letzte Element nicht größer (Abbildung~\ref{fig:beispiel-biton-2}) bzw.
+kleiner (Abbildung~\ref{fig:beispiel-biton-3}) als das erste Element der Folge
+sein darf.
 
 \begin{figure}
   \centering
 
 \begin{figure}
   \centering
@@ -547,10 +548,9 @@ alle Komparatoren in die gleiche Richtung zeigen.
   \begin{center}
   \input{images/batcher-8.tex}
   \end{center}
   \begin{center}
   \input{images/batcher-8.tex}
   \end{center}
-  \caption{$\operatorname{BS}(8)$, Batchers {\em bitones Mergesort-Netzwerk}
-  für acht Eingänge. Markiert sind die beiden Instanzen von
-  $\operatorname{BS}(4)$ (rot), die beiden bitonen
-  Mischer~$\operatorname{BM}(4)$ (blau) und die Komparatoren, die im letzten
+  \caption{\bs{8}, Batchers \emph{bitones Mergesort}-Netzwerk für acht
+  Eingänge. Markiert sind die beiden Instanzen von \bs{4} (rot), die beiden
+  bitonen Mischer~\bm{4} (blau) und die Komparatoren, die im letzten
   rekursiven Schritt hinzugefügt wurden (grün).}
   \label{fig:bitonic-08}
 \end{figure}
   rekursiven Schritt hinzugefügt wurden (grün).}
   \label{fig:bitonic-08}
 \end{figure}
@@ -822,6 +822,7 @@ die Anzahl der Schichten als Bewertungskriterium verwendet, immer eine
 Komprimierung durchgeführt werden.
 
 \subsection{Normalisieren}
 Komprimierung durchgeführt werden.
 
 \subsection{Normalisieren}
+\label{sect:normalisieren}
 
 \begin{figure}
   \centering
 
 \begin{figure}
   \centering
@@ -927,17 +928,20 @@ das {\em Odd-Even-Transpositionsort-Netzwerk}.
 
 \begin{figure}
   \centering
 
 \begin{figure}
   \centering
-  \subfigure[foo]{\input{images/oe-transposition-cut0.tex}\label{fig:oe-transposition-cut0}}
-  \subfigure[bar]{\input{images/oe-transposition-cut1.tex}\label{fig:oe-transposition-cut1}}
-  \subfigure[baz]{\input{images/oe-transposition-cut2.tex}\label{fig:oe-transposition-cut2}}
-  \subfigure[qux]{\input{images/oe-transposition-cut3.tex}\label{fig:oe-transposition-cut3}}
+  \subfigure[Auf der Leitung~4 wird $-\infty$ angelegt. Dadurch ist der Pfad
+  durch das Sortiernetzwerk eindeutig festgelegt.]{\input{images/oe-transposition-cut0.tex}\label{fig:oe-transposition-cut0}}
+  \subfigure[Komparatoren, die einen wechsel der Leitungen bewirken, werden
+  durch sich kreuzende Leitungen ersetzt.]{\input{images/oe-transposition-cut1.tex}\label{fig:oe-transposition-cut1}}
+  \subfigure[Leitung~4 wurde entfernt. Übrig bleibt ein Sortiernetzwerk mit
+  7~Leitungen.]{\input{images/oe-transposition-cut2.tex}\label{fig:oe-transposition-cut2}}
+  \subfigure[Die Leitungen wurden wieder gerade eingezeichnet und die
+  Komparatoren regelmäßig angeordnet. Blau eingezeichnet ist \oet{7}.]{\input{images/oe-transposition-cut3.tex}\label{fig:oe-transposition-cut3}}
   \caption{Eine Leitung wird aus dem
   \caption{Eine Leitung wird aus dem
-  \emph{Odd-Even-Transpositionsort}-Netzwerk $\operatorname{OET}(8)$ entfernt:
-  Auf der rot markierten Leitung wird $\infty$ angelegt. Da der Wert bei jedem
-  Komparator am unteren Ende herauskommt, ist der Pfad fest vorgegeben. Da die
-  restlichen Werte trotzdem noch richtig sortiert werden müssen, kann dieser
-  Pfad herausgetrennt werden. In der letzten Abbildung ist
-  $\operatorname{OET}(7)$ markiert.}
+  \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{8} entfernt: Auf der rot
+  markierten Leitung wird $-\infty$ angelegt. Da der Wert bei jedem Komparator
+  am unteren Ende herauskommt, ist der Pfad fest vorgegeben. Da die restlichen
+  Werte trotzdem noch richtig sortiert werden müssen, kann dieser Pfad
+  herausgetrennt werden. In der letzten Abbildung ist \oet{7} markiert.}
   \label{fig:oe-transposition-cut}
 \end{figure}
 
   \label{fig:oe-transposition-cut}
 \end{figure}
 
@@ -960,19 +964,25 @@ auszuwerten -- über die verbleibenden Eingänge haben wir keine Aussage
 getroffen. Entsprechend müssen die verbleibenden Ausgänge eine sortierte Liste
 mit $(n-1)$~Elementen darstellen.
 
 getroffen. Entsprechend müssen die verbleibenden Ausgänge eine sortierte Liste
 mit $(n-1)$~Elementen darstellen.
 
-Wenn wir die Minimum- beziehungsweise Maximum-Leitung entfernen
-(Abbildung~\ref{fig:oe-transposition-cut2}), bleibt das Sortiernetzwerk für
-$(n-1)$~Leitungen übrig. Je nachdem, ob auf einer Leitung ein Minimum oder ein
-Maximum angenommen wird, bezeichnen wir das eliminieren einer Leitung als
-\emph{Minimum-Schnitt} beziehungsweise \emph{Maximum-Schnitt}.
+Wenn man die Minimum- beziehungsweise Maximum-Leitung entfernt, wie in
+Abbildung~\ref{fig:oe-transposition-cut2} dargestellt, bleibt das
+Sortiernetzwerk für $(n-1)$~Leitungen übrig. Je nachdem, ob auf einer Leitung
+ein Minimum oder ein Maximum angenommen wird, bezeichnen wir das eliminieren
+einer Leitung als \emph{Minimum-Schnitt} beziehungsweise
+\emph{Maximum-Schnitt}.
 
 Die letzte Abbildung, \ref{fig:oe-transposition-cut3}, zeigt das
 Sortiernetzwerk wieder mit den üblichen geraden Leitungen und die rot
 markierten Komparatoren wurden verschoben, so dass sich eine kompaktere
 Darstellung ergibt. Ausserdem ist das
 
 Die letzte Abbildung, \ref{fig:oe-transposition-cut3}, zeigt das
 Sortiernetzwerk wieder mit den üblichen geraden Leitungen und die rot
 markierten Komparatoren wurden verschoben, so dass sich eine kompaktere
 Darstellung ergibt. Ausserdem ist das
-{\em Odd-Even-Transpositionsort-Netzwerk} für sieben Werte markiert. Der
-zusätzliche Komparator vor dem $\textrm{OET}(7)$ hat keinen Einfluss auf die
-Ausgabe und kann entfernt werden.
+\emph{Odd-Even-Transpositionsort}-Netzwerk für sieben Werte markiert. Der
+zusätzliche Komparator vor dem \oet{7} hat keinen Einfluss auf die Ausgabe und
+kann entfernt werden.
+
+Durch das Ersetzen von Komparatoren durch gekreuzte Leitungen werden häufig
+\emph{Nicht-Standard-Sortiernetzwerke} erzeugt. Im Anschluss an einen
+\emph{Schnitt} empfiehlt es sich deshalb, das Sortiernetzwerk zu
+\emph{normalisieren}, wie in Abschnitt~\ref{sect:normalisieren} beschrieben.
 
 \subsubsection{Anzahl möglicher und unterschiedlicher Schnittmuster}
 \label{sect:anzahl_schnittmuster}
 
 \subsubsection{Anzahl möglicher und unterschiedlicher Schnittmuster}
 \label{sect:anzahl_schnittmuster}
@@ -980,8 +990,8 @@ Ausgabe und kann entfernt werden.
 Der Eliminierungsschritt kann iterativ angewandt werden, um aus einem
 Sortiernetzwerk mit $n$~Ein\-gängen Sortiernetzwerke mit $n-1$, $n-2$,
 $n-3$,~\dots Eingängen zu erzeugen. Insbesondere können auf diese Art und
 Der Eliminierungsschritt kann iterativ angewandt werden, um aus einem
 Sortiernetzwerk mit $n$~Ein\-gängen Sortiernetzwerke mit $n-1$, $n-2$,
 $n-3$,~\dots Eingängen zu erzeugen. Insbesondere können auf diese Art und
-Weise einen Sortiernetzwerke mit $2n$~Eingängen wieder auf Sortiernetzwerke
-mit $n$~Eingängen reduziert werden. $k$~Minimum- und Maximum-Schnitte, die
+Weise Sortiernetzwerke mit $2n$~Eingängen auf Sortiernetzwerke mit
+$n$~Eingängen reduziert werden. $k$~Minimum- und Maximum-Schnitte, die
 nacheinander angewendet ein $n$-Sortiernetzwerk auf ein
 ${(n-k)}$-Sortiernetz\-werk reduzieren, bezeichnen wir als
 \emph{$k$-Schnittmuster}.
 nacheinander angewendet ein $n$-Sortiernetzwerk auf ein
 ${(n-k)}$-Sortiernetz\-werk reduzieren, bezeichnen wir als
 \emph{$k$-Schnittmuster}.
@@ -1392,11 +1402,11 @@ von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}. Mit diesem
 Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
 gute Schnittmuster gesucht.
 
 Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
 gute Schnittmuster gesucht.
 
-Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet die \emph{Schnittmuster},
-die in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als
-Individuen. Um zwei Individuen zu rekombinieren werden die ersten $r$~Schnitte
-des einen Schnittmusters verwendet und die letzten ${c-r}$~Schnitte des
-zweiten Schmittmusters. $r$ ist eine Zufallsvariable mit $0 \leqq r \leqq c$.
+Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet \emph{Schnittmuster}, die
+in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als Individuen.
+Um zwei Individuen zu rekombinieren werden die ersten $r$~Schnitte des einen
+Schnittmusters verwendet und die letzten ${c-r}$~Schnitte des zweiten
+Schmittmusters. $r$ ist eine Zufallsvariable mit $0 \leqq r \leqq c$.
 
 Die Mutation setzt entweder die Leitungs-Nummer eines Schnitts~$i$ zufällig
 auf einen neuen Wert $l$ mit $0 \leqq l \le n-i$ oder invertiert die
 
 Die Mutation setzt entweder die Leitungs-Nummer eines Schnitts~$i$ zufällig
 auf einen neuen Wert $l$ mit $0 \leqq l \le n-i$ oder invertiert die
@@ -1651,9 +1661,9 @@ selbst erzeugen kann.
 Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben, ist die Anzahl
 der \emph{unterschiedlichen} Schnittmuster und damit die Anzahl der Nachfolger
 sehr groß. Bei den untersuchten 16-Sortiernetzwerken lag die Anzahl der
 Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben, ist die Anzahl
 der \emph{unterschiedlichen} Schnittmuster und damit die Anzahl der Nachfolger
 sehr groß. Bei den untersuchten 16-Sortiernetzwerken lag die Anzahl der
-Nachfolger zwar noch unter 20.000, bei den untersuchten 32-Sortiernetzwerken
-wurden jedoch bereits bis zu $2,6 \cdot 10^8$ unterschiedliche Schnittmuster
-geschätzt.
+Nachfolger zwar noch unter 20.000, bei den untersuchten
+32-Sortier\-netz\-werken wurden jedoch bereits bis zu $2,6 \cdot 10^8$
+unterschiedliche Schnittmuster geschätzt.
 
 Der Algorithmus {\sc SN-Markov} legt auf diesem Nachfolger-Graph einen
 zufälligen Weg (englisch: \textit{random walk}) zurück. Er startet auf einem
 
 Der Algorithmus {\sc SN-Markov} legt auf diesem Nachfolger-Graph einen
 zufälligen Weg (englisch: \textit{random walk}) zurück. Er startet auf einem
@@ -1674,12 +1684,26 @@ für n Iterationen
 gib Netzwerk zurück
 \end{verbatim}
 
 gib Netzwerk zurück
 \end{verbatim}
 
-Die Abbildungen~\ref{fig:markov-comparators-12},
-\ref{fig:markov-comparators-14}, \ref{fig:markov-comparators-12},
-\ref{fig:markov-comparators-16} und~\ref{fig:markov-comparators-18} zeigen die
-Anzahl der Komparatoren der Sortiernetzwerke, die \textsc{SN-Markov} auf
-seinem zufälligen Pfad durchläuft. Ausserdem eingezeichnet ist eine
-\emph{Gamma-Verteilung}.
+Die Graphen in Abbildung~\ref{fig:markov-comparators} zeigen die Anzahl der
+Komparatoren der Sortiernetzwerke, die \textsc{SN-Markov} auf seinem
+zufälligen Pfad durchläuft (rot). Für jeden Graphen wurde der
+\textsc{SN-Markov}-Algorithmus auf einem entsprechenden
+\emph{Odd-Even-Transporitionsort}-Netzwerk gestartet hat mindestens
+1.000.000~Iterationen durchlaufen. In jedem Schritt wurde die Anzahl der
+Komparatoren des Sortiernetzwerks bestimmt und ein entsprechender Zähler
+erhöht. In Abbildung~\ref{fig:markov-comparators} ist die resultierende
+prezenturale Verteilung zu sehen.
+
+Ebenfalls in die Graphen in Abbildung~\ref{fig:markov-comparators}
+eingezeichnet ist eine \emph{Gamma-Verteilung} (grün), die die gemessenen
+Daten gut annähert. Die Gamma-Verteilung verwendet einen Offset~$\delta$, der
+um Eins kleiner als die kleinste erreichte Komparatorzahl gewählt wurde.
+Beispielsweise war die kleinste erreichte Komparatorzahl bei
+16-Sortiernetzwerken~63, entsprechend wurde der Offset $\delta = 63 - 1$
+gesetzt und die Gamma-Verteilung $g(x - 62)$ eingezeichnet. Die Parameter $k$
+und $\theta$, die eine Gamma-Verteilung charakterisieren, wurden mit einem
+Fitting-Algorithmus bestimmt. Der konkrete Offset ist als Parameter~$\delta$
+unter den Graphen angegeben.
 
 \begin{figure}
   \begin{center}
 
 \begin{figure}
   \begin{center}
@@ -1702,44 +1726,57 @@ seinem zufälligen Pfad durchläuft. Ausserdem eingezeichnet ist eine
 \end{itemize}
 
 \begin{figure}
 \end{itemize}
 
 \begin{figure}
-  \begin{center}
-  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-12-pct.pdf}
-  \end{center}
-  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 12~Leitungen),
-  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
-  \emph{Gamma-Verteilung} $f(x - 40)$ mit $k = 8,267$ und $\theta = 0,962$.}
-  \label{fig:markov-comparators-12}
-\end{figure}
-
-\begin{figure}
-  \begin{center}
-  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-14-pct.pdf}
-  \end{center}
-  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 14~Leitungen),
-  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
-  \emph{Gamma-Verteilung} $f(x - 52)$ mit $k = 9,522$ und $\theta = 0,867$.}
-  \label{fig:markov-comparators-14}
+  \centering
+  \subfigure[12 Leitungen, $k = 8,267$, $\theta = 0,962$, $\delta = 40$]{\includegraphics[viewport=0 0 425 262,width=7cm]{images/markov-comparators-12-pct.pdf}}
+  \subfigure[14 Leitungen, $k = 9,522$, $\theta = 0,867$, $\delta = 52$]{\includegraphics[viewport=0 0 425 262,width=7cm]{images/markov-comparators-14-pct.pdf}}
+  \subfigure[16 Leitungen, $k = 17,939$, $\theta = 1,091$, $\delta = 62$]{\includegraphics[viewport=0 0 425 262,width=7cm]{images/markov-comparators-16-pct.pdf}}
+  \subfigure[18 Leitungen, $k = 10,724$, $\theta = 0,766$, $\delta = 81$]{\includegraphics[viewport=0 0 425 262,width=7cm]{images/markov-comparators-18-pct.pdf}}
+  \caption{Anzahl der Komparatoren von Sortiernetzwerken,
+  die von {\sc SN-Markov} durchlaufen wurden (rot). Ebenfalls eingezeichnet
+  ist jeweils eine \emph{Gamma-Verteilung} (grün), die eine gute Näherung der
+  gemessenen Daten darstellt.}
+  \label{fig:markov-comparators}
 \end{figure}
 
 \begin{figure}
   \begin{center}
 \end{figure}
 
 \begin{figure}
   \begin{center}
-  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-16-pct.pdf}
+    \includegraphics[viewport=0 0 425 262,width=15cm]{images/comparison-comparators-16.pdf}
   \end{center}
   \end{center}
-  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen),
-  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
-  \emph{Gamma-Verteilung} $f(x - 62)$ mit $k = 17,939$ und $\theta = 1,091$.}
-  \label{fig:markov-comparators-16}
+  \caption{Anzahl der Komparatoren, die 16-Sortiernetzwerke von
+  \textsc{SN-Markov} und \textsc{SN-Evolution} (mit dem
+  \emph{Odd-Even-Mischer} und dem \emph{bitonen Mischer}) gesaßen.}
+  \label{fig:comparison-comparators}
 \end{figure}
 
 \end{figure}
 
-\begin{figure}
-  \begin{center}
-  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-18-pct.pdf}
-  \end{center}
-  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 18~Leitungen),
-  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
-  \emph{Gamma-Verteilung} $f(x - 81)$ mit $k = 10,724$ und $\theta = 0,766$.}
-  \label{fig:markov-comparators-18}
-\end{figure}
+%\begin{figure}
+%  \begin{center}
+%  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-14-pct.pdf}
+%  \end{center}
+%  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 14~Leitungen),
+%  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+%  \emph{Gamma-Verteilung} $f(x - 52)$ mit $k = 9,522$ und $\theta = 0,867$.}
+%  \label{fig:markov-comparators-14}
+%\end{figure}
+%
+%\begin{figure}
+%  \begin{center}
+%  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-16-pct.pdf}
+%  \end{center}
+%  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen),
+%  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+%  \emph{Gamma-Verteilung} $f(x - 62)$ mit $k = 17,939$ und $\theta = 1,091$.}
+%  \label{fig:markov-comparators-16}
+%\end{figure}
+%
+%\begin{figure}
+%  \begin{center}
+%  \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-comparators-18-pct.pdf}
+%  \end{center}
+%  \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 18~Leitungen),
+%  die von {\sc SN-Markov} durchlaufen wurden. Grün eingezeichnet ist die
+%  \emph{Gamma-Verteilung} $f(x - 81)$ mit $k = 10,724$ und $\theta = 0,766$.}
+%  \label{fig:markov-comparators-18}
+%\end{figure}
 
 \newpage
 \section{Ausblick}
 
 \newpage
 \section{Ausblick}