+Referenz zu 0-1-Prinzip.
authorFlorian Forster <octo@leeloo.octo.it>
Fri, 18 Feb 2011 11:08:59 +0000 (12:08 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Fri, 18 Feb 2011 11:08:59 +0000 (12:08 +0100)
diplomarbeit.tex

index b91aa6e..316954c 100644 (file)
@@ -189,6 +189,7 @@ Permutationen auf die sortierte Reihenfolge ab. Allerdings wächst $n!$
 Permutationen schon bei 16~Leitungen praktisch nicht mehr zu bewerkstelligen
 ist.\footnote{1.307.674.368.000 Permutationen}
 
+\label{sect:0-1-prinzip}
 Glücklicherweise reicht es aus, alle möglichen 0-1-Folgen zu überprüfen, wie
 \textit{Donald~E. Knuth} in \cite{KNUTH} zeigt. Die Beweisidee ist folgende:
 Angenommen ein Komparatornetzwerk sortiert alle 0-1-Folgen und es gibt eine
@@ -1235,7 +1236,8 @@ Eigenschaft zerstören.
 Nach einer Mutation müsste man überprüfen, ob das neue Komparatornetzwerk die
 Sortiereigenschaft noch besitzt. Nach heutigem Wissenstand ist diese
 Überprüfung nur mit exponentiellem Aufwand möglich, etwa durch das
-Ausprobieren aller $2^n$~Bitmuster.
+Ausprobieren aller $2^n$~Bitmuster, wie in Abschnitt~\ref{sect:0-1-prinzip}
+beschrieben.
 
 Um das Potenzial einer Mutation abzuschätzen habe ich in den evolutionären
 Algorithmus eine Überprüfung eingebaut. Unmittelbar vor dem Einfügen in die