Permutationen schon bei 16~Leitungen praktisch nicht mehr zu bewerkstelligen
ist.\footnote{1.307.674.368.000 Permutationen}
+\label{sect:0-1-prinzip}
Glücklicherweise reicht es aus, alle möglichen 0-1-Folgen zu überprüfen, wie
\textit{Donald~E. Knuth} in \cite{KNUTH} zeigt. Die Beweisidee ist folgende:
Angenommen ein Komparatornetzwerk sortiert alle 0-1-Folgen und es gibt eine
Nach einer Mutation müsste man überprüfen, ob das neue Komparatornetzwerk die
Sortiereigenschaft noch besitzt. Nach heutigem Wissenstand ist diese
Überprüfung nur mit exponentiellem Aufwand möglich, etwa durch das
-Ausprobieren aller $2^n$~Bitmuster.
+Ausprobieren aller $2^n$~Bitmuster, wie in Abschnitt~\ref{sect:0-1-prinzip}
+beschrieben.
Um das Potenzial einer Mutation abzuschätzen habe ich in den evolutionären
Algorithmus eine Überprüfung eingebaut. Unmittelbar vor dem Einfügen in die