$k$~Schnitten gestartet, so ist das beste Ergebnis immer das
$\operatorname{OET}(n-k)$-Netzwerk.
+\begin{table}
+ \begin{center}
+ \rowcolors{2}{black!5}{}
+ \begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+ \hline
+ & 8 & 9 & 10 & 11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20 & 21 & 22 & 23 \\
+ \hline
+ 9 & 21 & & & & & & & & & & & & & & & \\
+ 10 & 20 & 27 & & & & & & & & & & & & & & \\
+ 11 & 20 & 27 & 32 & & & & & & & & & & & & & \\
+ 12 & 20 & 26 & 32 & 39 & & & & & & & & & & & & \\
+ 13 & 20 & 26 & 32 & 39 & 45 & & & & & & & & & & & \\
+ 14 & 20 & 26 & 32 & 39 & 45 & 53 & & & & & & & & & & \\
+ 15 & 20 & 26 & 32 & 39 & 45 & 53 & 61 & & & & & & & & & \\
+ 16 & 20 & 26 & 32 & 39 & 45 & 53 & 61 & 70 & & & & & & & & \\
+ 17 & 20 & 26 & 32 & 37 & 43 & 50 & 57 & 65 & 74 & & & & & & & \\
+ 18 & 20 & 26 & 31 & 37 & 43 & 49 & 56 & 63 & 71 & 82 & & & & & & \\
+ 19 & 20 & 26 & 31 & 37 & 43 & 48 & 55 & 62 & 70 & 79 & 88 & & & & & \\
+ 20 & 20 & 26 & 32 & 37 & 44 & 48 & 55 & 61 & 68 & 77 & 86 & 95 & & & & \\
+ 21 & 20 & 26 & 32 & 37 & 44 & 48 & 55 & 61 & 68 & 77 & 85 & 94 & 103 & & & \\
+ 22 & 20 & 26 & 31 & 37 & 42 & 48 & 54 & 61 & 67 & 77 & 84 & 93 & 102 & 112 & & \\
+ 23 & 20 & 26 & 31 & 37 & 42 & 48 & 54 & 61 & 68 & 76 & 84 & 93 & 102 & 112 & 122 & \\
+ 24 & 20 & 26 & 32 & 37 & 42 & 48 & 54 & 61 & 68 & 76 & 84 & 93 & 102 & 112 & 122 & 133 \\
+ \hline
+\bs{n} & 24 & 28 & 33 & 39 & 46 & 53 & 61 & 70 & 80 & 85 & 91 & 98 & 106 & 114 & 123 & 133 \\
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{Anzahl der Komparatoren der Ergebnisse des
+ \textsc{SN-Evolution-Cut} mit verschiedenen Größen des \emph{bitonen
+ Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$. Jede Zeile gibt
+ die Ergebnisse für ein Eingabenetzwerk \bs{n} an, die Spalten
+ repräsentieren die Anzahl der Leitungen des Ausgabenetzwerks.}
+ \label{tbl:ec-bs-fast}
+\end{table}
+
\subsection[Odd-Even-Mergesort-Netzwerk]{Versuche mit dem Odd-Even-Mergesort-Netzwerk}
\label{sect:sn-evolution-cut:oes}