--- /dev/null
+/*
+ * Copyright (c) 2005, Jon Seymour
+ *
+ * For more information about epoch theory on which this module is based,
+ * refer to http://blackcubes.dyndns.org/epoch/. That web page defines
+ * terms such as "epoch" and "minimal, non-linear epoch" and provides rationales
+ * for some of the algorithms used here.
+ *
+ */
+#include <stdlib.h>
+#include <openssl/bn.h> // provides arbitrary precision integers
+ // required to accurately represent fractional
+ //mass
+
+#include "cache.h"
+#include "commit.h"
+#include "epoch.h"
+
+struct fraction {
+ BIGNUM numerator;
+ BIGNUM denominator;
+};
+
+#define HAS_EXACTLY_ONE_PARENT(n) ((n)->parents && !(n)->parents->next)
+
+static BN_CTX *context = NULL;
+static struct fraction *one = NULL;
+static struct fraction *zero = NULL;
+
+static BN_CTX *get_BN_CTX()
+{
+ if (!context) {
+ context = BN_CTX_new();
+ }
+ return context;
+}
+
+static struct fraction *new_zero()
+{
+ struct fraction *result = xmalloc(sizeof(*result));
+ BN_init(&result->numerator);
+ BN_init(&result->denominator);
+ BN_zero(&result->numerator);
+ BN_one(&result->denominator);
+ return result;
+}
+
+static void clear_fraction(struct fraction *fraction)
+{
+ BN_clear(&fraction->numerator);
+ BN_clear(&fraction->denominator);
+}
+
+static struct fraction *divide(struct fraction *result, struct fraction *fraction, int divisor)
+{
+ BIGNUM bn_divisor;
+
+ BN_init(&bn_divisor);
+ BN_set_word(&bn_divisor, divisor);
+
+ BN_copy(&result->numerator, &fraction->numerator);
+ BN_mul(&result->denominator, &fraction->denominator, &bn_divisor, get_BN_CTX());
+
+ BN_clear(&bn_divisor);
+ return result;
+}
+
+static struct fraction *init_fraction(struct fraction *fraction)
+{
+ BN_init(&fraction->numerator);
+ BN_init(&fraction->denominator);
+ BN_zero(&fraction->numerator);
+ BN_one(&fraction->denominator);
+ return fraction;
+}
+
+static struct fraction *get_one()
+{
+ if (!one) {
+ one = new_zero();
+ BN_one(&one->numerator);
+ }
+ return one;
+}
+
+static struct fraction *get_zero()
+{
+ if (!zero) {
+ zero = new_zero();
+ }
+ return zero;
+}
+
+static struct fraction *copy(struct fraction *to, struct fraction *from)
+{
+ BN_copy(&to->numerator, &from->numerator);
+ BN_copy(&to->denominator, &from->denominator);
+ return to;
+}
+
+static struct fraction *add(struct fraction *result, struct fraction *left, struct fraction *right)
+{
+ BIGNUM a, b, gcd;
+
+ BN_init(&a);
+ BN_init(&b);
+ BN_init(&gcd);
+
+ BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
+ BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
+ BN_mul(&result->denominator, &left->denominator, &right->denominator, get_BN_CTX());
+ BN_add(&result->numerator, &a, &b);
+
+ BN_gcd(&gcd, &result->denominator, &result->numerator, get_BN_CTX());
+ BN_div(&result->denominator, NULL, &result->denominator, &gcd, get_BN_CTX());
+ BN_div(&result->numerator, NULL, &result->numerator, &gcd, get_BN_CTX());
+
+ BN_clear(&a);
+ BN_clear(&b);
+ BN_clear(&gcd);
+
+ return result;
+}
+
+static int compare(struct fraction *left, struct fraction *right)
+{
+ BIGNUM a, b;
+
+ int result;
+
+ BN_init(&a);
+ BN_init(&b);
+
+ BN_mul(&a, &left->numerator, &right->denominator, get_BN_CTX());
+ BN_mul(&b, &left->denominator, &right->numerator, get_BN_CTX());
+
+ result = BN_cmp(&a, &b);
+
+ BN_clear(&a);
+ BN_clear(&b);
+
+ return result;
+}
+
+struct mass_counter {
+ struct fraction seen;
+ struct fraction pending;
+};
+
+static struct mass_counter *new_mass_counter(struct commit *commit, struct fraction *pending)
+{
+ struct mass_counter *mass_counter = xmalloc(sizeof(*mass_counter));
+ memset(mass_counter, 0, sizeof(*mass_counter));
+
+ init_fraction(&mass_counter->seen);
+ init_fraction(&mass_counter->pending);
+
+ copy(&mass_counter->pending, pending);
+ copy(&mass_counter->seen, get_zero());
+
+ if (commit->object.util) {
+ die("multiple attempts to initialize mass counter for %s\n", sha1_to_hex(commit->object.sha1));
+ }
+
+ commit->object.util = mass_counter;
+
+ return mass_counter;
+}
+
+static void free_mass_counter(struct mass_counter *counter)
+{
+ clear_fraction(&counter->seen);
+ clear_fraction(&counter->pending);
+ free(counter);
+}
+
+//
+// Finds the base commit of a list of commits.
+//
+// One property of the commit being searched for is that every commit reachable
+// from the base commit is reachable from the commits in the starting list only
+// via paths that include the base commit.
+//
+// This algorithm uses a conservation of mass approach to find the base commit.
+//
+// We start by injecting one unit of mass into the graph at each
+// of the commits in the starting list. Injecting mass into a commit
+// is achieved by adding to its pending mass counter and, if it is not already
+// enqueued, enqueuing the commit in a list of pending commits, in latest
+// commit date first order.
+//
+// The algorithm then preceeds to visit each commit in the pending queue.
+// Upon each visit, the pending mass is added to the mass already seen for that
+// commit and then divided into N equal portions, where N is the number of
+// parents of the commit being visited. The divided portions are then injected
+// into each of the parents.
+//
+// The algorithm continues until we discover a commit which has seen all the
+// mass originally injected or until we run out of things to do.
+//
+// If we find a commit that has seen all the original mass, we have found
+// the common base of all the commits in the starting list.
+//
+// The algorithm does _not_ depend on accurate timestamps for correct operation.
+// However, reasonably sane (e.g. non-random) timestamps are required in order
+// to prevent an exponential performance characteristic. The occasional
+// timestamp inaccuracy will not dramatically affect performance but may
+// result in more nodes being processed than strictly necessary.
+//
+// This procedure sets *boundary to the address of the base commit. It returns
+// non-zero if, and only if, there was a problem parsing one of the
+// commits discovered during the traversal.
+//
+static int find_base_for_list(struct commit_list *list, struct commit **boundary)
+{
+
+ int ret = 0;
+
+ struct commit_list *cleaner = NULL;
+ struct commit_list *pending = NULL;
+
+ *boundary = NULL;
+
+ struct fraction injected;
+
+ init_fraction(&injected);
+
+ for (; list; list = list->next) {
+
+ struct commit *item = list->item;
+
+ if (item->object.util || (item->object.flags & UNINTERESTING)) {
+ die("%s:%d:%s: logic error: this should not have happened - commit %s\n",
+ __FILE__, __LINE__, __FUNCTION__, sha1_to_hex(item->object.sha1));
+ }
+
+ new_mass_counter(list->item, get_one());
+ add(&injected, &injected, get_one());
+
+ commit_list_insert(list->item, &cleaner);
+ commit_list_insert(list->item, &pending);
+ }
+
+ while (!*boundary && pending && !ret) {
+
+ struct commit *latest = pop_commit(&pending);
+
+ struct mass_counter *latest_node = (struct mass_counter *) latest->object.util;
+
+ if ((ret = parse_commit(latest)))
+ continue;
+
+ add(&latest_node->seen, &latest_node->seen, &latest_node->pending);
+
+ int num_parents = count_parents(latest);
+
+ if (num_parents) {
+
+ struct fraction distribution;
+ struct commit_list *parents;
+
+ divide(init_fraction(&distribution), &latest_node->pending, num_parents);
+
+ for (parents = latest->parents; parents; parents = parents->next) {
+
+ struct commit *parent = parents->item;
+ struct mass_counter *parent_node = (struct mass_counter *) parent->object.util;
+
+ if (!parent_node) {
+
+ parent_node = new_mass_counter(parent, &distribution);
+
+ insert_by_date(&pending, parent);
+ commit_list_insert(parent, &cleaner);
+
+ } else {
+
+ if (!compare(&parent_node->pending, get_zero())) {
+ insert_by_date(&pending, parent);
+ }
+ add(&parent_node->pending, &parent_node->pending, &distribution);
+
+ }
+ }
+
+ clear_fraction(&distribution);
+
+ }
+
+ if (!compare(&latest_node->seen, &injected)) {
+ *boundary = latest;
+ }
+
+ copy(&latest_node->pending, get_zero());
+
+ }
+
+ while (cleaner) {
+
+ struct commit *next = pop_commit(&cleaner);
+ free_mass_counter((struct mass_counter *) next->object.util);
+ next->object.util = NULL;
+
+ }
+
+ if (pending)
+ free_commit_list(pending);
+
+ clear_fraction(&injected);
+
+ return ret;
+
+}
+
+
+//
+// Finds the base of an minimal, non-linear epoch, headed at head, by
+// applying the find_base_for_list to a list consisting of the parents
+//
+static int find_base(struct commit *head, struct commit **boundary)
+{
+ int ret = 0;
+ struct commit_list *pending = NULL;
+ struct commit_list *next;
+
+ commit_list_insert(head, &pending);
+ for (next = head->parents; next; next = next->next) {
+ commit_list_insert(next->item, &pending);
+ }
+ ret = find_base_for_list(pending, boundary);
+ free_commit_list(pending);
+
+ return ret;
+}
+
+//
+// This procedure traverses to the boundary of the first epoch in the epoch
+// sequence of the epoch headed at head_of_epoch. This is either the end of
+// the maximal linear epoch or the base of a minimal non-linear epoch.
+//
+// The queue of pending nodes is sorted in reverse date order and each node
+// is currently in the queue at most once.
+//
+static int find_next_epoch_boundary(struct commit *head_of_epoch, struct commit **boundary)
+{
+ int ret;
+ struct commit *item = head_of_epoch;
+
+ ret = parse_commit(item);
+ if (ret)
+ return ret;
+
+ if (HAS_EXACTLY_ONE_PARENT(item)) {
+
+ // we are at the start of a maximimal linear epoch .. traverse to the end
+
+ // traverse to the end of a maximal linear epoch
+ while (HAS_EXACTLY_ONE_PARENT(item) && !ret) {
+ item = item->parents->item;
+ ret = parse_commit(item);
+ }
+ *boundary = item;
+
+ } else {
+
+ // otherwise, we are at the start of a minimal, non-linear
+ // epoch - find the common base of all parents.
+
+ ret = find_base(item, boundary);
+
+ }
+
+ return ret;
+}
+
+//
+// Returns non-zero if parent is known to be a parent of child.
+//
+static int is_parent_of(struct commit *parent, struct commit *child)
+{
+ struct commit_list *parents;
+ for (parents = child->parents; parents; parents = parents->next) {
+ if (!memcmp(parent->object.sha1, parents->item->object.sha1, sizeof(parents->item->object.sha1)))
+ return 1;
+ }
+ return 0;
+}
+
+//
+// Pushes an item onto the merge order stack. If the top of the stack is
+// marked as being a possible "break", we check to see whether it actually
+// is a break.
+//
+static void push_onto_merge_order_stack(struct commit_list **stack, struct commit *item)
+{
+ struct commit_list *top = *stack;
+ if (top && (top->item->object.flags & DISCONTINUITY)) {
+ if (is_parent_of(top->item, item)) {
+ top->item->object.flags &= ~DISCONTINUITY;
+ }
+ }
+ commit_list_insert(item, stack);
+}
+
+//
+// Marks all interesting, visited commits reachable from this commit
+// as uninteresting. We stop recursing when we reach the epoch boundary,
+// an unvisited node or a node that has already been marking uninteresting.
+// This doesn't actually mark all ancestors between the start node and the
+// epoch boundary uninteresting, but does ensure that they will
+// eventually be marked uninteresting when the main sort_first_epoch
+// traversal eventually reaches them.
+//
+static void mark_ancestors_uninteresting(struct commit *commit)
+{
+ unsigned int flags = commit->object.flags;
+ int visited = flags & VISITED;
+ int boundary = flags & BOUNDARY;
+ int uninteresting = flags & UNINTERESTING;
+
+ if (uninteresting || boundary || !visited) {
+ commit->object.flags |= UNINTERESTING;
+ return;
+
+ // we only need to recurse if
+ // we are not on the boundary, and,
+ // we have not already been marked uninteresting, and,
+ // we have already been visited.
+
+ //
+ // the main sort_first_epoch traverse will
+ // mark unreachable all uninteresting, unvisited parents
+ // as they are visited so there is no need to duplicate
+ // that traversal here.
+ //
+ // similarly, if we are already marked uninteresting
+ // then either all ancestors have already been marked
+ // uninteresting or will be once the sort_first_epoch
+ // traverse reaches them.
+ //
+ }
+
+ struct commit_list *next;
+
+ for (next = commit->parents; next; next = next->next)
+ mark_ancestors_uninteresting(next->item);
+}
+
+//
+// Sorts the nodes of the first epoch of the epoch sequence of the epoch headed at head
+// into merge order.
+//
+static void sort_first_epoch(struct commit *head, struct commit_list **stack)
+{
+ struct commit_list *parents;
+ struct commit_list *reversed_parents = NULL;
+
+ head->object.flags |= VISITED;
+
+ //
+ // parse_commit builds the parent list in reverse order with respect to the order of
+ // the git-commit-tree arguments.
+ //
+ // so we need to reverse this list to output the oldest (or most "local") commits last.
+ //
+
+ for (parents = head->parents; parents; parents = parents->next)
+ commit_list_insert(parents->item, &reversed_parents);
+
+ //
+ // todo: by sorting the parents in a different order, we can alter the
+ // merge order to show contemporaneous changes in parallel branches
+ // occurring after "local" changes. This is useful for a developer
+ // when a developer wants to see all changes that were incorporated
+ // into the same merge as her own changes occur after her own
+ // changes.
+ //
+
+ while (reversed_parents) {
+
+ struct commit *parent = pop_commit(&reversed_parents);
+
+ if (head->object.flags & UNINTERESTING) {
+ // propagates the uninteresting bit to
+ // all parents. if we have already visited
+ // this parent, then the uninteresting bit
+ // will be propagated to each reachable
+ // commit that is still not marked uninteresting
+ // and won't otherwise be reached.
+ mark_ancestors_uninteresting(parent);
+ }
+
+ if (!(parent->object.flags & VISITED)) {
+ if (parent->object.flags & BOUNDARY) {
+
+ if (*stack) {
+ die("something else is on the stack - %s\n", sha1_to_hex((*stack)->item->object.sha1));
+ }
+
+ push_onto_merge_order_stack(stack, parent);
+ parent->object.flags |= VISITED;
+
+ } else {
+
+ sort_first_epoch(parent, stack);
+
+ if (reversed_parents) {
+ //
+ // this indicates a possible discontinuity
+ // it may not be be actual discontinuity if
+ // the head of parent N happens to be the tail
+ // of parent N+1
+ //
+ // the next push onto the stack will resolve the
+ // question
+ //
+ (*stack)->item->object.flags |= DISCONTINUITY;
+ }
+ }
+ }
+ }
+
+ push_onto_merge_order_stack(stack, head);
+}
+
+//
+// Emit the contents of the stack.
+//
+// The stack is freed and replaced by NULL.
+//
+// Sets the return value to STOP if no further output should be generated.
+//
+static int emit_stack(struct commit_list **stack, emitter_func emitter)
+{
+ unsigned int seen = 0;
+ int action = CONTINUE;
+
+ while (*stack && (action != STOP)) {
+
+ struct commit *next = pop_commit(stack);
+
+ seen |= next->object.flags;
+
+ if (*stack) {
+ action = (*emitter) (next);
+ }
+ }
+
+ if (*stack) {
+ free_commit_list(*stack);
+ *stack = NULL;
+ }
+
+ return (action == STOP || (seen & UNINTERESTING)) ? STOP : CONTINUE;
+}
+
+//
+// Sorts an arbitrary epoch into merge order by sorting each epoch
+// of its epoch sequence into order.
+//
+// Note: this algorithm currently leaves traces of its execution in the
+// object flags of nodes it discovers. This should probably be fixed.
+//
+static int sort_in_merge_order(struct commit *head_of_epoch, emitter_func emitter)
+{
+ struct commit *next = head_of_epoch;
+ int ret = 0;
+ int action = CONTINUE;
+
+ ret = parse_commit(head_of_epoch);
+
+ while (next && next->parents && !ret && (action != STOP)) {
+
+ struct commit *base = NULL;
+
+ if ((ret = find_next_epoch_boundary(next, &base)))
+ return ret;
+
+ next->object.flags |= BOUNDARY;
+ if (base) {
+ base->object.flags |= BOUNDARY;
+ }
+
+ if (HAS_EXACTLY_ONE_PARENT(next)) {
+
+ while (HAS_EXACTLY_ONE_PARENT(next)
+ && (action != STOP)
+ && !ret) {
+
+ if (next->object.flags & UNINTERESTING) {
+ action = STOP;
+ } else {
+ action = (*emitter) (next);
+ }
+
+ if (action != STOP) {
+ next = next->parents->item;
+ ret = parse_commit(next);
+ }
+ }
+
+ } else {
+
+ struct commit_list *stack = NULL;
+ sort_first_epoch(next, &stack);
+ action = emit_stack(&stack, emitter);
+ next = base;
+
+ }
+
+ }
+
+ if (next && (action != STOP) && !ret) {
+ (*emitter) (next);
+ }
+
+ return ret;
+}
+
+//
+// Sorts the nodes reachable from a starting list in merge order, we
+// first find the base for the starting list and then sort all nodes in this
+// subgraph using the sort_first_epoch algorithm. Once we have reached the base
+// we can continue sorting using sort_in_merge_order.
+//
+int sort_list_in_merge_order(struct commit_list *list, emitter_func emitter)
+{
+ struct commit_list *stack = NULL;
+ struct commit *base;
+
+ int ret = 0;
+ int action = CONTINUE;
+
+ struct commit_list *reversed = NULL;
+
+ for (; list; list = list->next) {
+
+ struct commit *next = list->item;
+
+ if (!(next->object.flags & UNINTERESTING)) {
+ if (next->object.flags & DUPCHECK) {
+ fprintf(stderr, "%s: duplicate commit %s ignored\n", __FUNCTION__, sha1_to_hex(next->object.sha1));
+ } else {
+ next->object.flags |= DUPCHECK;
+ commit_list_insert(list->item, &reversed);
+ }
+ }
+ }
+
+ if (!reversed->next) {
+
+ // if there is only one element in the list, we can sort it using
+ // sort_in_merge_order.
+
+ base = reversed->item;
+
+ } else {
+
+ // otherwise, we search for the base of the list
+
+ if ((ret = find_base_for_list(reversed, &base)))
+ return ret;
+
+ if (base) {
+ base->object.flags |= BOUNDARY;
+ }
+
+ while (reversed) {
+ sort_first_epoch(pop_commit(&reversed), &stack);
+ if (reversed) {
+ //
+ // if we have more commits to push, then the
+ // first push for the next parent may (or may not)
+ // represent a discontinuity with respect to the
+ // parent currently on the top of the stack.
+ //
+ // mark it for checking here, and check it
+ // with the next push...see sort_first_epoch for
+ // more details.
+ //
+ stack->item->object.flags |= DISCONTINUITY;
+ }
+ }
+
+ action = emit_stack(&stack, emitter);
+ }
+
+ if (base && (action != STOP)) {
+ ret = sort_in_merge_order(base, emitter);
+ }
+
+ return ret;
+}