Kleine Korrekturen.
authorFlorian Forster <octo@leeloo.octo.it>
Thu, 20 Jan 2011 08:45:23 +0000 (09:45 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Thu, 20 Jan 2011 08:45:23 +0000 (09:45 +0100)
diplomarbeit.tex

index 21ff5e0..dfa31d9 100644 (file)
@@ -849,10 +849,10 @@ Ausgabe und kann entfernt werden.
 
 Der Eliminierungsschritt kann iterativ angewandt werden, um aus einem
 Sortiernetzwerk mit $n$~Ein\-gängen Sortiernetzwerke mit $n-1$, $n-2$,
-$n-3$,~\dots Eingängen zu erzeugen. Insbesondere können wir auf diese Art und
-Weise einen Sortiernetzwerk mit $2n$~Eingängen wieder auf ein Sortiernetzwerk
-mit $n$~Eingängen reduzieren. Das Anwenden mehrerer Minimum- und
-Maximum-Schnitte bezeichnen wir als \emph{Schnittmuster}.
+$n-3$,~\dots Eingängen zu erzeugen. Insbesondere können auf diese Art und
+Weise einen Sortiernetzwerke mit $2n$~Eingängen wieder auf Sortiernetzwerke
+mit $n$~Eingängen reduziert werden. Mehrere Minimum- und Maximum-Schnitte, die
+gleichzeitig angewendet werden, bezeichnen wir als \emph{Schnittmuster}.
 
 Zwei Schnittmuster heißen \emph{äquivalent} bezüglich~$S$, wenn ihre Anwendung
 auf das Sortiernetzwerk~$S$ das selbe Ergebnis liefert. Ansonsten heißen die
@@ -928,7 +928,7 @@ Um die Anzahl der \emph{unterschiedlichen} Schnittmuster abschätzen zu können,
 wurden je eine Million zufällige 8-Schnittmuster auf die 16-Sortiernetzwerke
 $\operatorname{OES}(16)$, $\operatorname{BS}(16)$ und $\operatorname{PS}(16)$
 angewandt. Abbildung~\ref{fig:count-cuts-16} trägt die Anzahl der
-\emph{unterschiedlichen} Sortiernetzwerke gegen die Anzahl der zufälligen
+\emph{unterschiedlichen} Schnittmuster gegen die Anzahl der zufälligen
 Schnittmuster auf. Klar zu sehen ist, dass sich die Anzahl der erzeugten
 Sortiernetzwerke nach $500.000$~Iterationen nur noch gering verändert und der
 Wert nach $1.000.000$~Iterationen allem Anschein nach dem Endwert schon sehr
@@ -940,9 +940,9 @@ führen aber nur zu wenigen \emph{unterschiedlichen} Sortiernetzwerken: 3519
 ($\approx 0,1\%$) im Fall des \emph{Odd-Even-Mergesort-Netzwerks}, 4973
 ($\approx 0,15\%$) beim \emph{bitonen Mergesort-Netzwerk} und 18764 ($\approx
 0,57\%$) beim \emph{Pairwise-Sorting-Netzwerk}. Zwar ist es möglich, dass mehr
-Iterationen die Anzahl der unterschiedlichen Netzwerke noch wachsen lässt. Die
-Graphen in Abbildung~\ref{fig:count-cuts-16} geben jedoch Grund zu der
-Annahme, dass Anzahl dieser zusätzlichen, unterschiedlichen Schnittmuster
+Iterationen die Anzahl der unterschiedlichen Schnittmuster noch wachsen lässt.
+Die Graphen in Abbildung~\ref{fig:count-cuts-16} geben jedoch Grund zu der
+Annahme, dass die Anzahl dieser zusätzlichen, unterschiedlichen Schnittmuster
 vernachlässigbar klein ist.
 
 Bedingt durch die sehr große Anzahl möglicher Schnittmuster ist dieses
@@ -951,7 +951,7 @@ die Anzahl der unterschiedlichen Schnittmuster trotzdem abschätzen zu können,
 kann man sich einer stochastischen Methode bedienen, der sogenannten
 \emph{Monte-Carlo-Methode}. Zunächst generiert man eine Menge~$S$ von
 $k$~unterschiedlichen Schnittmustern. Anschließend werden $n$~Schnittmuster
-zufällig erzeugt, und überprüft, ob sie sich in der Menge~$S$ enthalten sind.
+zufällig erzeugt und überprüft, ob sie sich in der Menge~$S$ enthalten sind.
 Unter der Annahme, dass das Verhältnis der zufälligen Schnittmuster, die in $S$
 enthalten sind, und $n$ dem Verhältnis von $k$ und der Anzahl der
 unterschiedlichen Schnittmuster ingesamt entspricht, kann man die Anzahl der
@@ -970,10 +970,10 @@ unterschiedlichen Schnittmuster abschätzen.
 In Abbildung~\ref{fig:collisions-10000-1000000-32} ist das Ergebnis des
 Monte-Carlo-Algorithmus für 16-Schnittmuster zu sehen, die auf
 $\operatorname{OES}(32)$ und $\operatorname{BS}(32)$ angewandt wurden: Von
-jedem Sortiernetzwerk wurden zunächst eine Menge von 10.000
+jedem Sortiernetzwerk wurden zunächst eine Menge~$S$ von 10.000
 \emph{unterschiedlichen} Schnittmustern erzeugt. Anschließend wurden 1.000.000
 zufällige Schnittmuster erzeugt und der Anteil der zufälligen Schnittmuster,
-die identisch zu einem in der Menge enthalten Schnittmuster sind, berechnet.
+die \emph{äquivalent} zu einem in~$S$ enthalten Schnittmuster sind, berechnet.
 Für $\operatorname{OES}(32)$ war dieser Anteil etwa $0,19 \%$, für
 $\operatorname{BS}(32)$ etwa $0,29 \%$. Das ergibt eine Abschätzung von $5,2
 \cdot 10^6$ unterschiedlichen Schnittmustern für $\operatorname{OES}(32)$ und
@@ -1003,11 +1003,11 @@ man keine Details mehr erkennen können. Aufgrund der hohen Anzahl
 unterschiedlicher Schnittmuster, wurde für das gleiche Experiment mit
 $\operatorname{PS}(32)$ eine initiale Menge von 100.000 unterschiedilchen
 Schnittmustern erzeugt. Trotzdem wurden nach 1.000.000 Iterationen nur 385
-Schnittmuster gefunden, die ein Sortiernetzwerk aus dieser Menge erzeugen.
-Daraus ergibt sich eine Abschätzung von $2,6 \cdot 10^8$ unterschiedlichen
-Schnittmustern -- zwei Zehnerpotenzen mehr als bei den vorherigen
-Sortiernetzwerken, aber immernoch fünf Zehnerpotenzen kleiner als die Anzahl
-der \emph{möglichen} Schnittmuster.
+Schnittmuster gefunden, die zu einem Schnittmuster in der Menge äquivalent
+sind. Daraus ergibt sich eine Abschätzung von $2,6 \cdot 10^8$
+unterschiedlichen Schnittmustern -- zwei Zehnerpotenzen mehr als bei den
+vorherigen Sortiernetzwerken, aber immernoch fünf Zehnerpotenzen kleiner als
+die Anzahl der \emph{möglichen} Schnittmuster.
 
 \newpage
 \section{Der \textsc{SN-Evolution}-Algorithmus}
@@ -1365,14 +1365,14 @@ $S_0$ mit sich selbst und anschließendem Eliminieren der Hälfte der Leitungen
 hervorgehen können, heißen \emph{Nachfolger} von $S_0$.
 
 Beim beschriebenen Vorgehen kann man die Sortiernetzwerke als Knoten in einem
-gerichteten Graphen betrachten. Zwei Knoten $V_0$ und $V_1$, die zwei
+(gerichteten) Graphen betrachten. Zwei Knoten $V_0$ und $V_1$, die zwei
 Sortiernetzwerke $S_0$ und $S_1$ repräsentieren, sind genau dann mit einer
-Kante ${E_{0,1} = (V_0, V_1)}$ verbunden, wenn $S_1$ ein \emph{Nachfolger} von $S_0$
-ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
+Kante ${E_{0,1} = (V_0, V_1)}$ verbunden, wenn $S_1$ ein \emph{Nachfolger} von
+$S_0$ ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
 selbst erzeugen kann.
 
 Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben ist die Anzahl
-(unterschiedlichen) Schnittmuster und damit die Anzahl der Nachfolger sehr
+(unterschiedlicher) Schnittmuster und damit die Anzahl der Nachfolger sehr
 groß. Wenn $S_0$ ein Sortiernetzwerk mit $n$~Leitungen ist, so hat $S_0$ bis
 zu
 \begin{displaymath}
@@ -1380,11 +1380,11 @@ zu
 \end{displaymath}
 Nachfolger.
 
-Der Algorithmus {\sc SN-Markov} legt auf diesem Graph einen zufälligen Weg
-(englisch: \textit{random walk}) zurück. Er startet auf einem gegebenen
-Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu gelangen
-rekombiniert er das aktuelle Sortiernetzwerk mit sich selbst und erhält so
-einen zufälligen Nachfolger.
+Der Algorithmus {\sc SN-Markov} legt auf diesem Nachfolger-Graph einen
+zufälligen Weg (englisch: \textit{random walk}) zurück. Er startet auf einem
+gegebenen Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu
+gelangen, rekombiniert der Algorithmus das aktuelle Sortiernetzwerk mit sich
+selbst und erhält so einen zufälligen Nachfolger.
 
 \begin{itemize}
   \item $n \leftarrow \mathrm{Input}$
@@ -1445,6 +1445,11 @@ einen zufälligen Nachfolger.
 Das würde mir noch einfallen$\ldots$
 
 \newpage
+\section{Implementierung}
+
+So habe ich die ganzen Versuche durchgeführt.
+
+\newpage
 \bibliography{references}
 \bibliographystyle{plain}