Schönheitskorrekturen.
authorFlorian Forster <octo@leeloo.octo.it>
Sat, 29 Jan 2011 11:29:53 +0000 (12:29 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Sat, 29 Jan 2011 11:29:53 +0000 (12:29 +0100)
diplomarbeit.tex

index 7116840..a1145c4 100644 (file)
@@ -228,34 +228,35 @@ beschäftigen.
 
 Viele {\em kombinatorische Optimierungsprobleme} sind schwer zu lösen -- die
 entsprechenden Entscheidungsprobleme liegen oft in der Komplexitätsklasse
-$NP$, sind also mit bekannten Verfahren nicht effizient exakt lösbar. Sollte
-sich herausstellen, dass diese Probleme nicht in der Komplexitätsklasse $P$
-liegen, wäre eine Konsequenz, dass es effiziente exakte Algorithmen für diese
-Probleme nicht geben kann. Falls sich hingegen herausstellt, dass diese
-Probleme in der Komplexitätsklasse~$P$ liegen, wird es mit großer
-Wahrscheinlichkeit noch einige Zeit dauern bis auch Algorithmen mit
-praktikablen Zeitkonstanten gefunden werden.
+\textit{NP}, das heißt das keine Verfahren bekannt sind, die das Problem
+effizient exakt lösbar. Sollte sich herausstellen, dass diese Probleme nicht
+in der Komplexitätsklasse~\textit{P} liegen, wäre eine Konsequenz, dass es
+effiziente exakte Algorithmen für diese Probleme nicht geben kann. Falls sich
+hingegen herausstellt, dass diese Probleme in der
+Komplexitätsklasse~\textit{P} liegen, wird es mit großer Wahrscheinlichkeit
+noch einige Zeit dauern, bis auch Algorithmen mit praktikablen Zeitkonstanten
+gefunden werden.
 
 Aus diesem Grund besteht die Notwendigkeit einen Kompromiss einzugehen: Statt
-die bzw. eine der {\em optimalen} Lösungen als einzige Ausgabe des Algorithmus
-zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele dieser
-Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
-beispielsweise immitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
+die beziehungsweise eine der {\em optimalen} Lösungen als einzige Ausgabe des
+Algorithmus zuzulassen, wird eine "`möglichst gute"' Lösung ausgegeben. Viele
+dieser Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur,
+beispielsweise imitieren die "`Ameisenalgorithmen"' das Verhalten von Ameisen
 auf der Futtersuche um kurze Rundreisen auf Graphen zu berechnen.
 
 Bei {\em Evolutionären Algorithmen} stand die Evolution pate. Die Grundidee
-ist es, bestehende Lösungen zu neuen, unter Umständen besseren Lösungen zu
+ist, bekannte Lösungen zu neuen -- unter Umständen besseren -- Lösungen zu
 kombinieren. Dabei bedient man sich der in der Evolutionstheorie etablierten
-Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem häufig
-als {\em Individuum} bezeichnet.
+Nomenklatur, beispielsweise werden konkrete Lösungen für ein Problem als {\em
+Individuen} bezeichnet.
 
 Die Vorgehensweise lässt sich abstrakt wie folgt beschreiben. Aus einer
-bestehenden Lösungsmenge, der {\em Population} werden zufällig Lösungen
+bestehenden Lösungsmenge, der {\em Population}, werden zufällig Lösungen
 ausgesucht {\em (Selektion)} und zu einer neuen Lösung kombiniert ({\em
 Rekombination}). Unter Umständen wird die neue Lösung noch zufällig
 verändert {\em (Mutation)}, bevor sie in die bestehende Lösungsmenge
-integriert wird. Die Wahrscheinlichkeiten, beispielsweise bei der {\em
-Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
+eingefügt wird. Die verwendeten Wahrscheinlichkeiten, beispielsweise bei der
+{\em Selektion}, sind dabei nicht zwangsläufig gleichverteilt -- üblicherweise
 werden bessere Lösungen bevorzugt. Zur Bewertung dient die sogenannte {\em
 Gütefunktion}.
 
@@ -686,7 +687,7 @@ benötigt werden.
 Das \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(n)$ besteht --~wie
 das \emph{bitone Mergesort-Netzwerk}~-- rekursiv aus kleineren Varianten von
 sich selbst und einem abschließenden \emph{Odd-Even-Mischer}. Die
-effizientesten Sortiernetzwerke in Bezuf auf Komparator- und Schichtzahl
+effizientesten Sortiernetzwerke in Bezug auf Komparator- und Schichtzahl
 entstehen, wenn die Anzahl der Leitungen jeweils halbiert wird. Somit besteht
 $\operatorname{OES}(n)$ aus
 $\operatorname{OES}\left(\left\lceil\frac{n}{2}\right\rceil\right)$,
@@ -716,7 +717,7 @@ die rekursiven Instanzen von $\operatorname{OEM}(4)$, der grüne Block markiert
 die Komparatoren, die in ersten Rekursionsschritt hinzugefügt werden.
 
 Im Allgemeinen ist die Anzahl der Komparatoren, die vom
-\emph{Odd-Even-Mergesort-Netzwerk} verwendet wird, $k(n)$, direkt aus der
+\emph{Odd-Even-Mergesort-Netz\-werk} verwendet wird, $k(n)$, direkt aus der
 Definition beziehungsweise der Konstruktionsanleitung abzulesen:
 \begin{displaymath}
   k(n) = k\left(\left\lceil\frac{n}{2}\right\rceil\right)
@@ -1070,7 +1071,7 @@ unterschiedlichen Schnittmuster abschätzen.
 
 \begin{figure}
   \begin{center}
-    \includegraphics[viewport=0 0 425 262,width=15cm]{images/collisions-10000-1000000-32.pdf}
+    \includegraphics[viewport=0 0 360 216,width=15cm]{images/collisions-10000-1000000-32.pdf}
   \end{center}
   \caption{Abschnätzung der unterschiedlichen Schnittmuster mit der
   \emph{Monte-Carlo-Methode} für $\operatorname{OES}(32)$ und