beobachten. Die entsprechenden schnellen Sortiernetzwerke sind in
Abbildung~\ref{fig:ec-oes-fast_networks} dargestellt.
+Wie beim \emph{bitonen Mergesort}-Netzwerk reicht auch beim
+\emph{Odd-Even-Mergesort}-Netzwerk ein einziger Schnitt nicht aus, um die
+Geschwindigkeit gegenüber \oes{m} zu verbessern. Bei $m = 11$ und $m = 12$ war
+jeweils mindestens ein 6-Schnittmuster notwendig, um eine höhere
+Geschwindigkeit zu erreichen.
+
+In Tabelle~\ref{tbl:ec-oes-19} sind die Ergebnisse von
+\textsc{SN-Evolution-Cut} für \oes{n}, $n = 20$ und $m = 19$ ($k = 1 \dots
+19$) aufgelistet. Mit $k = 10$ wird das erste mal ein schnelles
+19-Sortiernetzwerk mit 13~Schichten ausgegeben. Mit $k \geqq 11$ sind die
+resultierenden Netzwerke mit 93~Komparatoren effizienter als das Ergebnis mit
+$k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
+\emph{bitonen Mergesort}-Netzwerks erreicht wurde (92~Komparatoren in
+13~Schichten, siehe Tabelle~\ref{tbl:ec-bs-19}), wird nicht erreicht.
+
\begin{table}
\begin{center}
\rowcolors{2}{black!5}{}
\label{tbl:ec-oes-speed}
\end{table}
+\begin{table}
+ \begin{center}
+ \rowcolors{2}{black!5}{}
+ \begin{tabular}{|r|r|r|}
+ \hline
+ $n$ & Komp. & Schichten \\
+ \hline
+ 20 & 91 & 14 \\
+ 21 & 91 & 14 \\
+ 22 & 91 & 14 \\
+ 23 & 91 & 14 \\
+ 24 & 91 & 14 \\
+ 25 & 91 & 14 \\
+ 26 & 91 & 14 \\
+ 27 & 91 & 14 \\
+ 28 & 91 & 14 \\
+ 29 & 95 & 13 \\
+ 30 & 93 & 13 \\
+ 31 & 93 & 13 \\
+ 32 & 93 & 13 \\
+ 33 & 93 & 13 \\
+ 34 & 93 & 13 \\
+ 35 & 93 & 13 \\
+ 36 & 93 & 13 \\
+ 37 & 93 & 13 \\
+ 38 & 93 & 13 \\
+ \hline
+ \bs{19} & 98 & 14 \\
+ \oes{19} & 91 & 14 \\
+ \hline
+ \end{tabular}
+ \end{center}
+ \caption{Komparatoren und Schichten von Sortiernetzwerken, die von
+ \textsc{SN-Evolution-Cut} mit \oes{n} und $k = n - 19$ ermittelt wurden. Erst mit $k = 10$
+ ist es möglich gegenüber \oes{19} eine Schicht einzusparen. Dafür ist die
+ Effizienz von 91~Komparatoren nicht mehr erreichbar.}
+ \label{tbl:ec-oes-19}
+\end{table}
+
In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
-viele \emph{unterschiedliche} Schnittmuster die konstruktiven Sortiernetzwerke
-$\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und $\operatorname{PS}(32)$
-besitzen. Eines der Ergebnisse war, dass von diesen Sortiernetzwerken das
-\emph{Odd-Even-Mergesort}-Netzwerk die wenigsten unterschiedlichen
-16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen. Entsprechend ist es
-wenig verwunderlich, dass \textsc{SN-Evolution-Cut} gestartet mit
-$\operatorname{OES}(32)$ sehr schnell\footnote{Auf dem Computer, auf dem diese
-Arbeit geschrieben wurde, dauerte es in den meisten Fällen weniger als eine
-Sekunde bis ein entsprechendes Schnittmuster gefunden wurde.} ein gutes
-16-Schnittmuster findet.
+viele \emph{unterschiedliche} 16-Schnittmuster die konstruierten
+Sortiernetzwerke $\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und
+$\operatorname{PS}(32)$ besitzen. Eines der Ergebnisse war, dass von diesen
+Sortiernetzwerken das \emph{Odd-Even-Mergesort}-Netzwerk die wenigsten
+unterschiedlichen 16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen.
+Entsprechend ist es wenig verwunderlich, dass \textsc{SN-Evolution-Cut}
+gestartet mit $\operatorname{OES}(32)$ sehr schnell\footnote{Ein
+entsprechendes Ergebnis wird meist nach 20.000 bis 100.000 Iterationen
+geliefert. Bei dieser Problemgröße erreicht die Implementierung (siehe
+Abschnitt~\ref{sect:implementierung}) etwa 20.000 Iterationen pro Sekunde auf
+derzeitigen Computern.} ein gutes 16-Schnittmuster findet.
Eines der 16-Schnittmuster für \oes{32}, die ein Sortiernetzwerk erzeugen, das
bezüglich Effizienz und Geschwindigkeit identisch ist zu \oes{16}, ist