SN-Evolution-Cut: Mehr zu schnellen Netzwerken auf Basis von OES(n).
authorFlorian Forster <octo@leeloo.octo.it>
Sat, 26 Feb 2011 18:01:05 +0000 (19:01 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Sat, 26 Feb 2011 18:01:05 +0000 (19:01 +0100)
diplomarbeit.tex

index 3e575d5..d910dbb 100644 (file)
@@ -2241,6 +2241,21 @@ Fall für $m = 11$ und $k \geqq 6$, beziehungsweise $m = 12$ und $k \geqq 6$ zu
 beobachten. Die entsprechenden schnellen Sortiernetzwerke sind in
 Abbildung~\ref{fig:ec-oes-fast_networks} dargestellt.
 
+Wie beim \emph{bitonen Mergesort}-Netzwerk reicht auch beim
+\emph{Odd-Even-Mergesort}-Netzwerk ein einziger Schnitt nicht aus, um die
+Geschwindigkeit gegenüber \oes{m} zu verbessern. Bei $m = 11$ und $m = 12$ war
+jeweils mindestens ein 6-Schnittmuster notwendig, um eine höhere
+Geschwindigkeit zu erreichen.
+
+In Tabelle~\ref{tbl:ec-oes-19} sind die Ergebnisse von
+\textsc{SN-Evolution-Cut} für \oes{n}, $n = 20$ und $m = 19$ ($k = 1 \dots
+19$) aufgelistet. Mit $k = 10$ wird das erste mal ein schnelles
+19-Sortiernetzwerk mit 13~Schichten ausgegeben. Mit $k \geqq 11$ sind die
+resultierenden Netzwerke mit 93~Komparatoren effizienter als das Ergebnis mit
+$k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
+\emph{bitonen Mergesort}-Netzwerks erreicht wurde (92~Komparatoren in
+13~Schichten, siehe Tabelle~\ref{tbl:ec-bs-19}), wird nicht erreicht.
+
 \begin{table}
   \begin{center}
     \rowcolors{2}{black!5}{}
@@ -2278,17 +2293,57 @@ Abbildung~\ref{fig:ec-oes-fast_networks} dargestellt.
   \label{tbl:ec-oes-speed}
 \end{table}
 
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|r|r|}
+      \hline
+      $n$ & Komp. & Schichten \\
+      \hline
+      20  &  91 & 14 \\
+      21  &  91 & 14 \\
+      22  &  91 & 14 \\
+      23  &  91 & 14 \\
+      24  &  91 & 14 \\
+      25  &  91 & 14 \\
+      26  &  91 & 14 \\
+      27  &  91 & 14 \\
+      28  &  91 & 14 \\
+      29  &  95 & 13 \\
+      30  &  93 & 13 \\
+      31  &  93 & 13 \\
+      32  &  93 & 13 \\
+      33  &  93 & 13 \\
+      34  &  93 & 13 \\
+      35  &  93 & 13 \\
+      36  &  93 & 13 \\
+      37  &  93 & 13 \\
+      38  &  93 & 13 \\
+      \hline
+ \bs{19}  &  98 & 14 \\
+ \oes{19} &  91 & 14 \\
+      \hline
+    \end{tabular}
+  \end{center}
+  \caption{Komparatoren und Schichten von Sortiernetzwerken, die von
+    \textsc{SN-Evolution-Cut} mit \oes{n} und $k = n - 19$ ermittelt wurden. Erst mit $k = 10$
+    ist es möglich gegenüber \oes{19} eine Schicht einzusparen. Dafür ist die
+    Effizienz von 91~Komparatoren nicht mehr erreichbar.}
+  \label{tbl:ec-oes-19}
+\end{table}
+
 In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
-viele \emph{unterschiedliche} Schnittmuster die konstruktiven Sortiernetzwerke
-$\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und $\operatorname{PS}(32)$
-besitzen. Eines der Ergebnisse war, dass von diesen Sortiernetzwerken das
-\emph{Odd-Even-Mergesort}-Netzwerk die wenigsten unterschiedlichen
-16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen. Entsprechend ist es
-wenig verwunderlich, dass \textsc{SN-Evolution-Cut} gestartet mit
-$\operatorname{OES}(32)$ sehr schnell\footnote{Auf dem Computer, auf dem diese
-Arbeit geschrieben wurde, dauerte es in den meisten Fällen weniger als eine
-Sekunde bis ein entsprechendes Schnittmuster gefunden wurde.} ein gutes
-16-Schnittmuster findet.
+viele \emph{unterschiedliche} 16-Schnittmuster die konstruierten
+Sortiernetzwerke $\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und
+$\operatorname{PS}(32)$ besitzen. Eines der Ergebnisse war, dass von diesen
+Sortiernetzwerken das \emph{Odd-Even-Mergesort}-Netzwerk die wenigsten
+unterschiedlichen 16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen.
+Entsprechend ist es wenig verwunderlich, dass \textsc{SN-Evolution-Cut}
+gestartet mit $\operatorname{OES}(32)$ sehr schnell\footnote{Ein
+entsprechendes Ergebnis wird meist nach 20.000 bis 100.000 Iterationen
+geliefert. Bei dieser Problemgröße erreicht die Implementierung (siehe
+Abschnitt~\ref{sect:implementierung}) etwa 20.000 Iterationen pro Sekunde auf
+derzeitigen Computern.} ein gutes 16-Schnittmuster findet.
 
 Eines der 16-Schnittmuster für \oes{32}, die ein Sortiernetzwerk erzeugen, das
 bezüglich Effizienz und Geschwindigkeit identisch ist zu \oes{16}, ist