Diverse Änderungen.
authorFlorian Forster <octo@leeloo.octo.it>
Fri, 18 Feb 2011 14:38:01 +0000 (15:38 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Fri, 18 Feb 2011 14:38:01 +0000 (15:38 +0100)
diplomarbeit.tex

index c0213f2..a7f0bf9 100644 (file)
 \newcommand{\todo}[1]{{\bf TODO:} #1}
 \newcommand{\qed}{\hfill $\Box$ \par \bigskip}
 
+\newcommand{\oes}[1]{\ensuremath{\operatorname{OES}(#1)}}
+\newcommand{\bs}[1]{\ensuremath{\operatorname{BS}(#1)}}
+\newcommand{\ps}[1]{\ensuremath{\operatorname{PS}(#1)}}
+\newcommand{\oem}[1]{\ensuremath{\operatorname{OEM}(#1)}}
+\newcommand{\bm}[1]{\ensuremath{\operatorname{BM}(#1)}}
+
 \newtheorem{definition}{Definition}
 \newtheorem{satz}{Satz}
 
@@ -1238,7 +1244,7 @@ erhält.
 
 Zu einem vollständigen evolutionären Algorithmus gehört außerdem die Mutation
 --~eine zufällige Veränderung einer Lösung. Leider ist es nicht möglich ein
-Sortiernetzwerk zufällig zu verändern aber trotzdem die Sortiereigenschaft zu
+Sortiernetzwerk zufällig zu verändern und dabei die Sortiereigenschaft zu
 erhalten. Selbst das \emph{Hinzufügen} eines zufälligen Komparators kann diese
 Eigenschaft zerstören.
 
@@ -1248,70 +1254,117 @@ Sortiereigenschaft noch besitzt. Nach heutigem Wissenstand ist diese
 Ausprobieren aller $2^n$~Bitmuster, wie in Abschnitt~\ref{sect:0-1-prinzip}
 beschrieben.
 
-Um das Potenzial einer Mutation abzuschätzen habe ich in den evolutionären
-Algorithmus eine Überprüfung eingebaut. Unmittelbar vor dem Einfügen in die
-Population überprüft das Programm die Notwendigkeit jedes einzelnen
-Komparators. Dazu wurde nacheinander jeder Komparator entfernt und überprüft,
-ob das verbleibende Netzwerk die Sortiereigenschaft noch besitzt.
+Um das Potenzial einer Mutation abzuschätzen wurde in \textsc{SN-Evolution}
+eine Überprüfung eingebaut: Unmittelbar vor dem Einfügen in die Population
+überprüft eine Funktion die Notwendigkeit jedes einzelnen Komparators. Dazu
+wird nacheinander jeder Komparator entfernt und überprüft, ob das verbleibende
+Netzwerk die Sortiereigenschaft noch besitzt.
 
-\begin{itemize}
-\item Güte von Sortiernetzwerken (Anzahl der Komparatoren, Anzahl der
-Schichten, kobiniert)
-\item Rekombination: Merge Anhängen und Leitungen entfernen.
-\end{itemize}
+Trotz des hohen Rechenaufwandes -- bei 16-Sortiernetzwerken sind gut
+4~Millionen Tests notwendig, um alle Komparatoren zu überprüfen -- waren die
+Ergebnisse ernüchternd: Nach circa 1~Million Iterationen mit
+16-Sortiernetzwerken fand der so modifizierte Algorithmus keinen einzigen
+Komparator, den er hätte entfernen können.
 
-Ein Beispielnetzwerk, das von dem Algorithmus gefunden wird, zeigt
-Abbildung~\ref{fig:evolutionary_08}.
+\subsection{Güte}
 
-\begin{figure}
-\begin{center}
-\input{images/evolutionary-08.tex}
-\end{center}
-\caption{Ein mit dem evolutionären Algorithmus erzeugtes Sortiernetzwerk mit
-acht Eingängen. Es besteht aus 19~Komparatoren in 6~Schichten.}
-\label{fig:evolutionary_08}
-\end{figure}
+Die Qualität der erreichten Sortiernetzwerke wurde mit eine Gütefunktion
+beurteilt, die entsprechend dem im Abschnitt~\ref{sect:bewertung}
+vorgestellten Muster definiert ist. Wie beschrieben müssen die Faktoren häufig
+an die aktuelle Problemgröße angepasst werden, damit \textsc{SN-Evolution}
+schnell gute Ergebnisse liefert. Als guter Standardansatz haben sich die
+folgenden Werte herausgestellt:
+\begin{eqnarray*}
+w_{\mathrm{Basis}} &=& 0 \\
+w_{\mathrm{Komparatoren}} &=& 1 \\
+w_{\mathrm{Schichten}} &=& \left|S\right|_\mathrm{Leitungen}
+\end{eqnarray*}
 
-\begin{figure}
-\begin{center}
-\input{images/08-e2-1237993371.tex}
-\end{center}
-\caption{{\tt images/08-e2-1237993371.tex}: 19~Komparatoren in 6~Schichten}
-\label{fig:08-e2-1237993371}
-\end{figure}
+\subsection{Versuche mit dem bitonen Mischer}
 
 \begin{figure}
-\begin{center}
-\input{images/09-e2-1237997073.tex}
-\end{center}
-\caption{{\tt images/09-e2-1237997073.tex}: 25~Komparatoren in 8~Schichten}
-\label{fig:09-e2-1237997073}
+  \begin{center}
+    \input{images/16-e1-bitonic-1296542566.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 67~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution} unter Verwendung des \emph{bitonen Mischers}
+    erzeugt.}
+  \label{fig:16-e1-bitonic-1296542566}
 \end{figure}
 
-\begin{figure}
-\begin{center}
-\input{images/09-e2-1237999719.tex}
-\end{center}
-\caption{{\tt images/09-e2-1237999719.tex}: 25~Komparatoren in 7~Schichten}
-\label{fig:09-e2-1237999719}
-\end{figure}
+Verwendet man den \emph{bitonen Mischer} in der Rekombinationsphase von
+\textsc{SN-Evolution}, so erhält man Netzwerke wie das in
+Abbildung~\ref{fig:16-e1-bitonic-1296542566} dargestellte: Der Algorithmus
+wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk als triviale
+Initiallösung gestartet. Das Ergebnis ist ein Netzwerk, das effizienter ist
+als das bitone Mergesort-Netzwerk: $\operatorname{BS}(16)$ benötigt
+80~Komparatoren, das Sortiernetzwerk in
+Abbildung~\ref{fig:16-e1-bitonic-1296542566} benötigt lediglich~67.
+
+\subsection{Versuche mit dem Odd-Even-Mischer}
 
 \begin{figure}
-\begin{center}
-\input{images/10-e2-1239014566.tex}
-\end{center}
-\caption{{\tt images/10-e2-1239014566.tex}: 29~Komparatoren in 8~Schichten}
-\label{fig:10-e2-1239014566}
+  \begin{center}
+    \input{images/16-e1-oddeven-1296543330.tex}
+  \end{center}
+  \caption{Sortiernetzwerk mit 16~Leitungen und 63~Komparatoren in
+    10~Schichten. Das Netzwerk wurde von dem Algorithmus
+    \textsc{SN-Evolution} unter Verwendung des \emph{Odd-Even-Mischers}
+    erzeugt.}
+  \label{fig:16-e1-oddeven-1296543330}
 \end{figure}
 
-\subsection{Güte}
+Leider lies sich das Ergebnis des bitonen Mischers -- das von
+\textsc{SN-Evolution} ausgegebene Netzwerk war effizienter als das rekursiv
+aus dem verwendeten Mischer aufgebaute Sortiernetzwerk -- mit dem
+\emph{Odd-Even-Mischer} nicht wiederholen. Zwar erreichen die
+Sortiernetzwerke, die \textsc{SN-Evolution} unter Verwendung des
+\emph{Odd-Even-Mischers} findet, das \emph{Odd-Even-Mergesort}-Netzwerk
+bezüglich Schnelligkeit und Effizienz, ein Beispiel hierfür ist in
+Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen. Ein Netzwerk, das
+$\operatorname{OES}(n)$ in mindestens einem Merkmal übertrifft, konnte jedoch
+nicht beobachtet werden.
 
 \begin{itemize}
-\item So gut kann man mindestens werden {\em ($\rightarrow$ Bitonic-Mergesort, vermute ich)}.
-\item Wie gut die Netzwerke werden, hängt stark vom verwendeten \em{Mischer} ab.
+\item Güte von Sortiernetzwerken (Anzahl der Komparatoren, Anzahl der Schichten, kombiniert)
+\item Wie gut die Netzwerke werden, hängt stark vom verwendeten \emph{Mischer} ab.
 \item Ggf. Abschnitt „Shmoo-Äquivalenz“ kürzen und hier einbauen.
+\item Möglicherweise: Verwende den rekursiven Aufbau des \emph{Pairwise-Sorting}-Netzwerks um Sortiernetzwerke zu mergen.
 \end{itemize}
 
+%\begin{figure}
+%\begin{center}
+%\input{images/08-e2-1237993371.tex}
+%\end{center}
+%\caption{{\tt images/08-e2-1237993371.tex}: 19~Komparatoren in 6~Schichten}
+%\label{fig:08-e2-1237993371}
+%\end{figure}
+%
+%\begin{figure}
+%\begin{center}
+%\input{images/09-e2-1237997073.tex}
+%\end{center}
+%\caption{{\tt images/09-e2-1237997073.tex}: 25~Komparatoren in 8~Schichten}
+%\label{fig:09-e2-1237997073}
+%\end{figure}
+%
+%\begin{figure}
+%\begin{center}
+%\input{images/09-e2-1237999719.tex}
+%\end{center}
+%\caption{{\tt images/09-e2-1237999719.tex}: 25~Komparatoren in 7~Schichten}
+%\label{fig:09-e2-1237999719}
+%\end{figure}
+%
+%\begin{figure}
+%\begin{center}
+%\input{images/10-e2-1239014566.tex}
+%\end{center}
+%\caption{{\tt images/10-e2-1239014566.tex}: 29~Komparatoren in 8~Schichten}
+%\label{fig:10-e2-1239014566}
+%\end{figure}
+
 %\input{shmoo-aequivalenz.tex}
 
 \newpage
@@ -1473,14 +1526,6 @@ den Schichten~1--6 erkennt man zwei unabhängige Sortiernetzerke, die
 strukturell identisch zu $\operatorname{PS}(8)$ sind -- lediglich die
 Schichten~1 und~2 sowie 4~und~5 sind vertauscht.
 
-\begin{displaymath}
-\textit{Eingang}_i = \left\{ \begin{array}{rl}
-  -\infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{0, 6\} \\
-   \infty & \quad \textrm{falls } i \operatorname{mod} 8 \in \{2, 4\} \\
-        ? & \quad \mathrm{sonst}
-  \end{array} \right.
-\end{displaymath}
-
 \begin{figure}
   \begin{center}
     \input{images/32-pairwise-cut-16-pairwise.tex}
@@ -1489,6 +1534,28 @@ Schichten~1 und~2 sowie 4~und~5 sind vertauscht.
   \label{fig:ps16-from-ps32}
 \end{figure}
 
+Für das \emph{Pairwise-Sorting-Netzwerk} ist es vergleichsweise einfach
+regelmäßige Schnittmuster anzugeben, die aus dem Netzwerk einen kleineres
+schnelles und effizientes Sortiernetzwerk erzeugen. Beispielsweise führt das
+einfache Schnittmuster
+\begin{displaymath}
+\textit{Eingang}_i = \left\{ \begin{array}{rl}
+  -\infty & \quad \textrm{falls } i < \frac{1}{4} n \\
+   \infty & \quad \textrm{falls } i \geqq \frac{3}{4} n \\
+        ? & \quad \mathrm{sonst}
+  \end{array} \right.
+\end{displaymath}
+für $\operatorname{PS}\left(n = 2^d\right)$ zum Sortiernetzwerk
+$\operatorname{PS}\left(\frac{1}{2}n\right)$. Die Art und Weise, mit der
+dieses Schnittmuster Komparatoren eliminiert und welche Komparatoren das
+verbleibende Netzwerk ausmachen, ist in Abbildung~\ref{fig:ps16-from-ps32}
+dargestellt. Die matt blauen und roten Leitungen und Komparatoren sind
+diejenigen, die Aufgrund eines Minimums oder eines Maximums im resultierenden
+Netzwerk nicht mehr enthalten sind. Da die Minima und Maxima bereits auf den
+„richtigen“ Leitungen angelegt werden, müssen keine Leitungen vertauscht
+werden und das Ergebnis ist bereits normalisiert. Daher ist das resultierende
+Netzwerk in schwarz gut zu erkennen.
+
 \begin{figure}
   \begin{center}
     \input{images/16-pairwise.tex}
@@ -1499,21 +1566,50 @@ Schichten~1 und~2 sowie 4~und~5 sind vertauscht.
   \label{fig:16-pairwise}
 \end{figure}
 
-Wendet man \textsc{SN-Evolution-Cut} auf $\operatorname{PS}(16)$ an, so kann
-man $\operatorname{OES}(8)$ erhalten.
+Ein Spezialfall ergibt sich, wenn man \textsc{SN-Evolution-Cut} auf
+$\operatorname{PS}(16)$ anwendet: In diesem Fall kann man durch ein
+8-Schnittmuster das \emph{Odd-Even-Mergesort}-Netzwerk \oes{8} erhalten. Für
+größere Sortiernetzwerke ist dies hingegen nicht mehr möglich, beispielsweise
+kann $\operatorname{PS}(32)$ nicht durch ein 16-Schnittmuster in \oes{16}
+konvertiert werden. Die Verwandschaft von $\operatorname{PS}(n)$ und \oes{n}
+untersucht \textit{Moritz Mühlenthaler} ausführlich in~\cite{M2009}.
 
 \subsection{Versuche mit dem Odd-Even-Mergesort-Netzwerk}
 
-\todo{Schreibe noch etwas zum Odd-Even-Mergesort-Netzwerk.}
+In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
+viele \emph{unterschiedliche} Schnittmuster die konstruktiven Sortiernetzwerke
+$\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und $\operatorname{PS}(32)$
+besitzen. Eines der Ergebnisse war, dass von diesen Sortiernetzwerken das
+\emph{Odd-Even-Mergesort}-Netzwerk die wenigsten unterschiedlichen
+16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen. Entsprechend ist es
+wenig verwunderlich, dass \textsc{SN-Evolution-Cut} gestartet mit
+$\operatorname{OES}(32)$ sehr schnell ein gutes 16-Schnittmuster findet.
 
-\begin{itemize}
-  \item Beispiel: Moritz und Rolfs Optimierung für Bitonic-Sort.
-  \item Wie gut kann man durch wegschneiden werden?
-  \item Wieviele Schnitte ergeben das selbe Netzwerk? Oder andersrum: Wieviele
-  unterschiedliche Netzwerke kann ich erhalten? Wieviele Nachfolger hat ein
-  Netzwerk / Knoten in der Markov-Kette?
-  \item Abschnitt „Optimierung der Schnitte“ hier einbauen.
-\end{itemize}
+Eines der eher zufälligen Schnittmuster ist $\operatorname{MIN}(1, 6, 11, 14,
+17, 23, 26, 29)$, $\operatorname{MAX}(2, 7, 8, 13, 18, 21, 27, 31)$. Das
+Schnittmuster ist in Abbildung~\ref{fig:16-ec-from-oes32-cut} veranschaulicht,
+das resultierende Netzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32} zu sehen.
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-ec-from-oes32-cut.tex}
+  \end{center}
+  \caption{Visualisierung eines 16-Schnittmusters, das auf
+  $\operatorname{OES}(32)$ angewendet wieder ein schnelles und effizientes
+  Sortiernetzwerk ergibt.}
+  \label{fig:16-ec-from-oes32-cut}
+\end{figure}
+
+\begin{figure}
+  \begin{center}
+    \input{images/16-ec-from-oes32.tex}
+  \end{center}
+  \caption{16-Sortiernetzwerk mit 63~Komparatoren in 10~Schichten. 
+    Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution-Cut} aus dem
+    \emph{Odd-Even-Mergesort-Netzwerk} $\operatorname{OES}(32)$ durch
+    16~Schnitte erzeugt.}
+  \label{fig:16-ec-from-oes32}
+\end{figure}
 
 \newpage
 \section{Der \textsc{SN-Markov}-Algorithmus}