vernachlässigbar klein ist.
Bedingt durch die sehr große Anzahl möglicher Schnittmuster ist dieses
-Experiment für größere Sortiernetzwerke leider nicht sinnvoll durchführbar.
-Die Hashtabelle würde mehr Arbeitsspeicher benötigen als in derzeitigen
-Rechnern vorhanden ist, bevor ein entsprechender Graph den linearen Bereich
-für „kleine“ x-Werte verlässt.
+Experiment für größere Sortiernetzwerke nicht sinnvoll durchführbar. Die
+Hashtabelle würde mehr Arbeitsspeicher benötigen als in derzeitigen Rechnern
+vorhanden ist, bevor ein entsprechender Graph den linearen Bereich für
+„kleine“ x-Werte verlässt.
Um die Anzahl der unterschiedlichen Schnittmuster trotzdem abschätzen zu
können, kann man sich einer stochastischen Methode bedienen, der sogenannten
Diese Parameter haben einen großen Einfluss auf die Geschwindigkeit, mit der
der \textsc{SN-Evolution}-Algorithmus konvergiert und ob er tatsächlich gute
-Lösungen findet oder sich in \emph{lokalen} Optima verrennt. Leider gibt es
-kein Patentrezept für die Wahl der Parameter, so dass für verschiedene
+Lösungen findet oder sich in \emph{lokalen} Optima "`verfängt"'. Leider gibt
+es kein Patentrezept für die Wahl der Parameter, so dass für verschiedene
Leitungszahlen und Mischer-Typen experimentiert werden muss.
Als guter Standardansatz für \textsc{SN-Evolution} haben sich die folgenden
\label{sect:sn-evolution:rekombination}
Bei der Rekombination werden zwei Individuen --~hier Sortiernetzwerke~-- zu
-einer neuen Lösung kombiniert. Dazu verwenden wir einen Mischer, zum Beispiel
-den {\em bitonen Mischer} (Abschnitt~\ref{sect:der_bitone_mischer}) oder den
-\emph{Odd-Even}-Mischer (Abschnitt~\ref{sect:der_odd_even_mischer}), um die
-beiden Netzwerke zu einem Netzwerk mit $2n$~Leitungen zusammenzufügen.
-Anschließend werden zufällig $n$~Leitungen mit einem $n$-Schnittmuster wie in
-Abschnitt~\ref{sect:leitungen_entfernen} beschrieben entfernt.
+einer neuen Lösung kombiniert. Geeignete Mischer, um die beiden Netzwerke zu
+einem Netzwerk mit $2n$~Leitungen zusammenzufügen, sind zum Beispiel der {\em
+bitonen Mischer} (Abschnitt~\ref{sect:der_bitone_mischer}) und der
+\emph{Odd-Even}-Mischer (Abschnitt~\ref{sect:der_odd_even_mischer}),
+Anschließend werden $n$~Leitungen mit einem zufälligen $n$-Schnittmuster wie
+in Abschnitt~\ref{sect:leitungen_entfernen} beschrieben entfernt.
Dieses Verfahren hat den großen Vorteil, dass es die Sortiereigenschaft
erhält. Entsprechend muss nicht aufwendig überprüft werden, ob das