$S_0$ ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
selbst erzeugen kann.
-Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben ist die Anzahl
-(unterschiedlicher) Schnittmuster und damit die Anzahl der Nachfolger sehr
-groß. Wenn $S_0$ ein Sortiernetzwerk mit $n$~Leitungen ist, so hat $S_0$ bis
-zu
-\begin{displaymath}
- 2^n \cdot \left( \begin{array}{c} 2n \\ n \end{array} \right)
-\end{displaymath}
-Nachfolger.
+Wie in Abschnitt~\ref{sect:anzahl_schnittmuster} beschrieben, ist die Anzahl
+der \emph{unterschiedlichen} Schnittmuster und damit die Anzahl der Nachfolger
+sehr groß. Bei den untersuchten 16-Sortiernetzwerken lag die Anzahl der
+Nachfolger zwar noch unter 20000, bei den untersuchten 32-Sortiernetzwerken
+wurden jedoch bereits bis zu $2,6 \cdot 10^8$ unterschiedliche Schnittmuster
+geschätzt.
Der Algorithmus {\sc SN-Markov} legt auf diesem Nachfolger-Graph einen
zufälligen Weg (englisch: \textit{random walk}) zurück. Er startet auf einem
gegebenen Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu
gelangen, rekombiniert der Algorithmus das aktuelle Sortiernetzwerk mit sich
-selbst und erhält so einen zufälligen Nachfolger.
+selbst und erhält so einen zufälligen Nachfolger. In Pseudocode lässt dich der
+Algorithmus wie folgt beschreiben:
\begin{verbatim}
- Netzwerk := Eingabe
+Netzwerk := Eingabe
- für n Iterationen
- {
- Nachfolger := kombiniere (Netzwerk, Netzwerk)
- Netzwerk := Nachfolger
- }
+für n Iterationen
+{
+ Nachfolger := kombiniere (Netzwerk, Netzwerk)
+ Netzwerk := Nachfolger
+}
- gib Netzwerk zurück
+gib Netzwerk zurück
\end{verbatim}
+\begin{figure}
+ \begin{center}
+ \includegraphics[viewport=0 0 425 262,width=15cm]{images/markov-cycles-16.pdf}
+ \end{center}
+ \caption{Zyklen, die beim \textit{Random Walk} des
+ \textsc{SN-Markov}-Algorithmus detektiert wurden. Auf der x-Achse sind die
+ Anzahl der Schritte, die \textsc{SN-Markov} zurückgelegt hat, auf der
+ y-Achse die Längen der gefundenen Zyklen aufgetragen. Das initiale
+ Start-Sortiernetzwerk war $\operatorname{OET}(16)$.}
+ \label{fig:markov-cycles-16}
+\end{figure}
+
+
\begin{itemize}
\item Beste erreichte Netzwerke (gleich zu \emph{OE-Mergesort}).
\item Anzahl der erreichbaren Sortiernetzwerke.