info_t *);
static int allocate_data_structures(
- rrd_t *rrd, char ***updvals, rrd_value_t **pdp_temp, const char *tmplt,
- long **tmpl_idx, unsigned long *tmpl_cnt, unsigned long **rra_step_cnt,
- unsigned long **skip_update, rrd_value_t **pdp_new);
+ rrd_t *rrd,
+ char ***updvals,
+ rrd_value_t **pdp_temp,
+ const char *tmplt,
+ long **tmpl_idx,
+ unsigned long *tmpl_cnt,
+ unsigned long **rra_step_cnt,
+ unsigned long **skip_update,
+ rrd_value_t **pdp_new);
-static int parse_template(rrd_t *rrd, const char *tmplt,
- unsigned long *tmpl_cnt, long *tmpl_idx);
+static int parse_template(
+ rrd_t *rrd,
+ const char *tmplt,
+ unsigned long *tmpl_cnt,
+ long *tmpl_idx);
static int process_arg(
- char *step_start,
- rrd_t *rrd,
- rrd_file_t *rrd_file,
- unsigned long rra_begin,
+ char *step_start,
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
unsigned long *rra_current,
- time_t *current_time,
+ time_t *current_time,
unsigned long *current_time_usec,
- rrd_value_t *pdp_temp,
- rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *pdp_new,
unsigned long *rra_step_cnt,
- char **updvals,
- long *tmpl_idx,
- unsigned long tmpl_cnt,
- info_t **pcdp_summary,
- int version,
+ char **updvals,
+ long *tmpl_idx,
+ unsigned long tmpl_cnt,
+ info_t **pcdp_summary,
+ int version,
unsigned long *skip_update,
- int *schedule_smooth);
+ int *schedule_smooth);
-static int parse_ds(rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
- unsigned long tmpl_cnt, time_t *current_time, unsigned long *current_time_usec,
+static int parse_ds(
+ rrd_t *rrd,
+ char **updvals,
+ long *tmpl_idx,
+ char *input,
+ unsigned long tmpl_cnt,
+ time_t *current_time,
+ unsigned long *current_time_usec,
int version);
-static int get_time_from_reading(rrd_t *rrd, char timesyntax, char **updvals,
- time_t *current_time, unsigned long *current_time_usec, int version);
+static int get_time_from_reading(
+ rrd_t *rrd,
+ char timesyntax,
+ char **updvals,
+ time_t *current_time,
+ unsigned long *current_time_usec,
+ int version);
-static int update_pdp_prep(rrd_t *rrd, char **updvals,
- rrd_value_t *pdp_new, double interval);
+static int update_pdp_prep(
+ rrd_t *rrd,
+ char **updvals,
+ rrd_value_t *pdp_new,
+ double interval);
-static int calculate_elapsed_steps(rrd_t *rrd,
- unsigned long current_time, unsigned long current_time_usec,
- double interval, double *pre_int, double *post_int,
+static int calculate_elapsed_steps(
+ rrd_t *rrd,
+ unsigned long current_time,
+ unsigned long current_time_usec,
+ double interval,
+ double *pre_int,
+ double *post_int,
unsigned long *proc_pdp_cnt);
-static void simple_update(rrd_t *rrd, double interval, rrd_value_t *pdp_new);
+static void simple_update(
+ rrd_t *rrd,
+ double interval,
+ rrd_value_t *pdp_new);
-static int process_all_pdp_st(rrd_t *rrd, double interval,
- double pre_int, double post_int, unsigned long elapsed_pdp_st,
- rrd_value_t *pdp_new, rrd_value_t *pdp_temp);
+static int process_all_pdp_st(
+ rrd_t *rrd,
+ double interval,
+ double pre_int,
+ double post_int,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp);
-static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval,
- double pre_int, double post_int, long diff_pdp_st, rrd_value_t *pdp_new,
+static int process_pdp_st(
+ rrd_t *rrd,
+ unsigned long ds_idx,
+ double interval,
+ double pre_int,
+ double post_int,
+ long diff_pdp_st,
+ rrd_value_t *pdp_new,
rrd_value_t *pdp_temp);
static int update_all_cdp_prep(
- rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin,
- rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
- rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
- rrd_value_t *pdp_temp, unsigned long *rra_current,
- unsigned long *skip_update, int *schedule_smooth);
+ rrd_t *rrd,
+ unsigned long *rra_step_cnt,
+ unsigned long rra_begin,
+ rrd_file_t *rrd_file,
+ unsigned long elapsed_pdp_st,
+ unsigned long proc_pdp_cnt,
+ rrd_value_t **last_seasonal_coef,
+ rrd_value_t **seasonal_coef,
+ rrd_value_t *pdp_temp,
+ unsigned long *rra_current,
+ unsigned long *skip_update,
+ int *schedule_smooth);
-static int do_schedule_smooth(rrd_t *rrd, unsigned long rra_idx,
+static int do_schedule_smooth(
+ rrd_t *rrd,
+ unsigned long rra_idx,
unsigned long elapsed_pdp_st);
-static int update_cdp_prep(rrd_t *rrd, unsigned long elapsed_pdp_st,
- unsigned long start_pdp_offset, unsigned long *rra_step_cnt,
- int rra_idx, rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
- rrd_value_t *seasonal_coef, int current_cf);
+static int update_cdp_prep(
+ rrd_t *rrd,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long *rra_step_cnt,
+ int rra_idx,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int current_cf);
-static void update_cdp(unival *scratch, int current_cf,
- rrd_value_t pdp_temp_val, unsigned long rra_step_cnt,
- unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
- unsigned long pdp_cnt, rrd_value_t xff, int i, int ii);
+static void update_cdp(
+ unival *scratch,
+ int current_cf,
+ rrd_value_t pdp_temp_val,
+ unsigned long rra_step_cnt,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long pdp_cnt,
+ rrd_value_t xff,
+ int i,
+ int ii);
-static void initialize_cdp_val(unival *scratch, int current_cf,
- rrd_value_t pdp_temp_val, unsigned long elapsed_pdp_st,
- unsigned long start_pdp_offset, unsigned long pdp_cnt);
+static void initialize_cdp_val(
+ unival *scratch,
+ int current_cf,
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long pdp_cnt);
-static void reset_cdp(rrd_t *rrd, unsigned long elapsed_pdp_st,
- rrd_value_t *pdp_temp, rrd_value_t *last_seasonal_coef,
- rrd_value_t *seasonal_coef,
- int rra_idx, int ds_idx, int cdp_idx, enum cf_en current_cf);
+static void reset_cdp(
+ rrd_t *rrd,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int rra_idx,
+ int ds_idx,
+ int cdp_idx,
+ enum cf_en current_cf);
-static rrd_value_t initialize_average_carry_over(rrd_value_t pdp_temp_val,
- unsigned long elapsed_pdp_st, unsigned long start_pdp_offset,
+static rrd_value_t initialize_average_carry_over(
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
unsigned long pdp_cnt);
static rrd_value_t calculate_cdp_val(
- rrd_value_t cdp_val, rrd_value_t pdp_temp_val,
- unsigned long elapsed_pdp_st, int current_cf, int i, int ii);
+ rrd_value_t cdp_val,
+ rrd_value_t pdp_temp_val,
+ unsigned long elapsed_pdp_st,
+ int current_cf,
+ int i,
+ int ii);
-static int update_aberrant_cdps(rrd_t *rrd, rrd_file_t *rrd_file,
- unsigned long rra_begin, unsigned long *rra_current,
- unsigned long elapsed_pdp_st, rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef);
+static int update_aberrant_cdps(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp,
+ rrd_value_t **seasonal_coef);
-static int write_to_rras(rrd_t *rrd, rrd_file_t *rrd_file,
- unsigned long *rra_step_cnt, unsigned long rra_begin,
- unsigned long *rra_current, time_t current_time,
- unsigned long *skip_update, info_t **pcdp_summary);
+static int write_to_rras(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long *rra_step_cnt,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ time_t current_time,
+ unsigned long *skip_update,
+ info_t **pcdp_summary);
-static int write_RRA_row(rrd_file_t *rrd_file, rrd_t *rrd, unsigned long rra_idx,
- unsigned long *rra_current, unsigned short CDP_scratch_idx, info_t **pcdp_summary,
+static int write_RRA_row(
+ rrd_file_t *rrd_file,
+ rrd_t *rrd,
+ unsigned long rra_idx,
+ unsigned long *rra_current,
+ unsigned short CDP_scratch_idx,
+ info_t **pcdp_summary,
time_t rra_time);
-static int smooth_all_rras(rrd_t *rrd, rrd_file_t *rrd_file,
+static int smooth_all_rras(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
unsigned long rra_begin);
#ifndef HAVE_MMAP
-static int write_changes_to_disk(rrd_t *rrd, rrd_file_t *rrd_file,
+static int write_changes_to_disk(
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
int version);
#endif
* current_time_usec is set to 0 if the version number is 1 or 2.
*/
static inline void initialize_time(
- time_t *current_time, unsigned long *current_time_usec,
- int version)
+ time_t *current_time,
+ unsigned long *current_time_usec,
+ int version)
{
struct timeval tmp_time; /* used for time conversion */
rc = rrd_update_r(argv[optind], tmplt,
argc - optind - 1, (const char **) (argv + optind + 1));
-out:
+ out:
free(tmplt);
return rc;
}
info_t *pcdp_summary)
{
- int arg_i = 2;
+ int arg_i = 2;
unsigned long rra_begin; /* byte pointer to the rra
* area in the rrd file. this
* pointer never changes value */
unsigned long rra_current; /* byte pointer to the current write
* spot in the rrd file. */
- rrd_value_t *pdp_new; /* prepare the incoming data to be added
- * to the existing entry */
- rrd_value_t *pdp_temp; /* prepare the pdp values to be added
- * to the cdp values */
+ rrd_value_t *pdp_new; /* prepare the incoming data to be added
+ * to the existing entry */
+ rrd_value_t *pdp_temp; /* prepare the pdp values to be added
+ * to the cdp values */
- long *tmpl_idx; /* index representing the settings
- * transported by the tmplt index */
+ long *tmpl_idx; /* index representing the settings
+ * transported by the tmplt index */
unsigned long tmpl_cnt = 2; /* time and data */
- rrd_t rrd;
- time_t current_time = 0;
+ rrd_t rrd;
+ time_t current_time = 0;
unsigned long current_time_usec = 0; /* microseconds part of current time */
- char **updvals;
- int schedule_smooth = 0;
+ char **updvals;
+ int schedule_smooth = 0;
/* number of elapsed PDP steps since last update */
unsigned long *rra_step_cnt = NULL;
- int version; /* rrd version */
- rrd_file_t *rrd_file;
- char *arg_copy; /* for processing the argv */
+ int version; /* rrd version */
+ rrd_file_t *rrd_file;
+ char *arg_copy; /* for processing the argv */
unsigned long *skip_update; /* RRAs to advance but not write */
/* need at least 1 arguments: data. */
goto err_close;
}
- if (allocate_data_structures(&rrd, &updvals,
- &pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt,
- &rra_step_cnt, &skip_update, &pdp_new) == -1) {
+ if (allocate_data_structures(&rrd, &updvals,
+ &pdp_temp, tmplt, &tmpl_idx, &tmpl_cnt,
+ &rra_step_cnt, &skip_update,
+ &pdp_new) == -1) {
goto err_close;
}
rrd_set_error("failed duplication argv entry");
break;
}
- if (process_arg(arg_copy, &rrd, rrd_file, rra_begin, &rra_current,
+ if (process_arg(arg_copy, &rrd, rrd_file, rra_begin, &rra_current,
¤t_time, ¤t_time_usec, pdp_temp, pdp_new,
- rra_step_cnt, updvals, tmpl_idx, tmpl_cnt, &pcdp_summary,
- version, skip_update, &schedule_smooth) == -1) {
+ rra_step_cnt, updvals, tmpl_idx, tmpl_cnt,
+ &pcdp_summary, version, skip_update,
+ &schedule_smooth) == -1) {
free(arg_copy);
break;
}
if (rrd_test_error()) {
goto err_free_structures;
}
-
#ifndef HAVE_MMAP
if (write_changes_to_disk(&rrd, rrd_file, version) == -1) {
goto err_free_structures;
* Returns 0 on success, -1 on error.
*/
static int allocate_data_structures(
- rrd_t *rrd,
- char ***updvals,
- rrd_value_t **pdp_temp,
- const char *tmplt,
- long **tmpl_idx,
- unsigned long *tmpl_cnt,
- unsigned long **rra_step_cnt,
+ rrd_t *rrd,
+ char ***updvals,
+ rrd_value_t **pdp_temp,
+ const char *tmplt,
+ long **tmpl_idx,
+ unsigned long *tmpl_cnt,
+ unsigned long **rra_step_cnt,
unsigned long **skip_update,
- rrd_value_t **pdp_new)
+ rrd_value_t **pdp_new)
{
- unsigned i, ii;
- if ((*updvals = (char **)malloc(sizeof(char *)
- * (rrd->stat_head->ds_cnt + 1))) == NULL) {
+ unsigned i, ii;
+ if ((*updvals = (char **) malloc(sizeof(char *)
+ * (rrd->stat_head->ds_cnt + 1))) == NULL) {
rrd_set_error("allocating updvals pointer array.");
return -1;
}
- if ((*pdp_temp = (rrd_value_t *)malloc(sizeof(rrd_value_t)
- * rrd->stat_head->ds_cnt)) == NULL) {
+ if ((*pdp_temp = (rrd_value_t *) malloc(sizeof(rrd_value_t)
+ * rrd->stat_head->ds_cnt)) ==
+ NULL) {
rrd_set_error("allocating pdp_temp.");
goto err_free_updvals;
}
- if ((*skip_update = (unsigned long *)malloc(sizeof(unsigned long)
- * rrd->stat_head->rra_cnt)) == NULL) {
+ if ((*skip_update = (unsigned long *) malloc(sizeof(unsigned long)
+ *
+ rrd->stat_head->rra_cnt)) ==
+ NULL) {
rrd_set_error("allocating skip_update.");
goto err_free_pdp_temp;
}
- if ((*tmpl_idx = (long *)malloc(sizeof(unsigned long)
- * (rrd->stat_head->ds_cnt + 1))) == NULL) {
+ if ((*tmpl_idx = (long *) malloc(sizeof(unsigned long)
+ * (rrd->stat_head->ds_cnt + 1))) == NULL) {
rrd_set_error("allocating tmpl_idx.");
goto err_free_skip_update;
}
- if ((*rra_step_cnt = (unsigned long *)malloc(sizeof(unsigned long)
- * (rrd->stat_head->rra_cnt))) == NULL) {
+ if ((*rra_step_cnt = (unsigned long *) malloc(sizeof(unsigned long)
+ *
+ (rrd->stat_head->
+ rra_cnt))) == NULL) {
rrd_set_error("allocating rra_step_cnt.");
goto err_free_tmpl_idx;
}
tmpl_idx[1] -> 1; (DS 0)
tmpl_idx[2] -> 3; (DS 2)
tmpl_idx[3] -> 4; (DS 3) */
- (*tmpl_idx)[0] = 0; /* time */
+ (*tmpl_idx)[0] = 0; /* time */
for (i = 1, ii = 1; i <= rrd->stat_head->ds_cnt; i++) {
- if (dst_conv(rrd->ds_def[i-1].dst) != DST_CDEF)
+ if (dst_conv(rrd->ds_def[i - 1].dst) != DST_CDEF)
(*tmpl_idx)[ii++] = i;
}
*tmpl_cnt = ii;
}
}
- if ((*pdp_new = (rrd_value_t *)malloc(sizeof(rrd_value_t)
- * rrd->stat_head->ds_cnt)) == NULL) {
+ if ((*pdp_new = (rrd_value_t *) malloc(sizeof(rrd_value_t)
+ * rrd->stat_head->ds_cnt)) == NULL) {
rrd_set_error("allocating pdp_new.");
goto err_free_rra_step_cnt;
}
return 0;
-err_free_rra_step_cnt:
+ err_free_rra_step_cnt:
free(*rra_step_cnt);
-err_free_tmpl_idx:
+ err_free_tmpl_idx:
free(*tmpl_idx);
-err_free_skip_update:
+ err_free_skip_update:
free(*skip_update);
-err_free_pdp_temp:
+ err_free_pdp_temp:
free(*pdp_temp);
-err_free_updvals:
+ err_free_updvals:
free(*updvals);
return -1;
}
* Returns 0 on success.
*/
static int parse_template(
- rrd_t *rrd, const char *tmplt,
- unsigned long *tmpl_cnt, long *tmpl_idx)
+ rrd_t *rrd,
+ const char *tmplt,
+ unsigned long *tmpl_cnt,
+ long *tmpl_idx)
{
- char *dsname, *tmplt_copy;
- unsigned int tmpl_len, i;
- int ret = 0;
+ char *dsname, *tmplt_copy;
+ unsigned int tmpl_len, i;
+ int ret = 0;
- *tmpl_cnt = 1; /* the first entry is the time */
+ *tmpl_cnt = 1; /* the first entry is the time */
/* we should work on a writeable copy here */
if ((tmplt_copy = strdup(tmplt)) == NULL) {
rrd_set_error("error copying tmplt '%s'", tmplt);
ret = -1;
- goto out;
+ goto out;
}
dsname = tmplt_copy;
ret = -1;
goto out_free_tmpl_copy;
}
- if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname)+1) == 0) {
+ if ((tmpl_idx[(*tmpl_cnt)++] = ds_match(rrd, dsname) + 1) == 0) {
rrd_set_error("unknown DS name '%s'", dsname);
ret = -1;
goto out_free_tmpl_copy;
- }
+ }
/* go to the next entry on the tmplt_copy */
if (i < tmpl_len)
- dsname = &tmplt_copy[i+1];
+ dsname = &tmplt_copy[i + 1];
}
}
-out_free_tmpl_copy:
+ out_free_tmpl_copy:
free(tmplt_copy);
-out:
+ out:
return ret;
}
* Returns 0 on success, -1 on error.
*/
static int process_arg(
- char *step_start,
- rrd_t *rrd,
- rrd_file_t *rrd_file,
- unsigned long rra_begin,
+ char *step_start,
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
unsigned long *rra_current,
- time_t *current_time,
+ time_t *current_time,
unsigned long *current_time_usec,
- rrd_value_t *pdp_temp,
- rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *pdp_new,
unsigned long *rra_step_cnt,
- char **updvals,
- long *tmpl_idx,
- unsigned long tmpl_cnt,
- info_t **pcdp_summary,
- int version,
+ char **updvals,
+ long *tmpl_idx,
+ unsigned long tmpl_cnt,
+ info_t **pcdp_summary,
+ int version,
unsigned long *skip_update,
- int *schedule_smooth)
+ int *schedule_smooth)
{
rrd_value_t *seasonal_coef = NULL, *last_seasonal_coef = NULL;
unsigned long proc_pdp_cnt;
unsigned long rra_start;
- if (parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt,
- current_time, current_time_usec, version) == -1) {
+ if (parse_ds(rrd, updvals, tmpl_idx, step_start, tmpl_cnt,
+ current_time, current_time_usec, version) == -1) {
return -1;
}
/* seek to the beginning of the rra's */
rra_start = rra_begin;
interval = (double) (*current_time - rrd->live_head->last_up)
- + (double) ((long) *current_time_usec -
- (long) rrd->live_head->last_up_usec) / 1e6f;
+ + (double) ((long) *current_time_usec -
+ (long) rrd->live_head->last_up_usec) / 1e6f;
/* process the data sources and update the pdp_prep
* area accordingly */
return -1;
}
- elapsed_pdp_st = calculate_elapsed_steps(rrd,
- *current_time, *current_time_usec,
- interval, &pre_int, &post_int,
- &proc_pdp_cnt);
+ elapsed_pdp_st = calculate_elapsed_steps(rrd,
+ *current_time,
+ *current_time_usec, interval,
+ &pre_int, &post_int,
+ &proc_pdp_cnt);
/* has a pdp_st moment occurred since the last run ? */
if (elapsed_pdp_st == 0) {
simple_update(rrd, interval, pdp_new);
} else {
/* an pdp_st has occurred. */
- if (process_all_pdp_st(rrd, interval,
+ if (process_all_pdp_st(rrd, interval,
pre_int, post_int,
- elapsed_pdp_st,
- pdp_new, pdp_temp) == -1)
- {
+ elapsed_pdp_st, pdp_new, pdp_temp) == -1) {
return -1;
}
- if (update_all_cdp_prep(rrd, rra_step_cnt,
+ if (update_all_cdp_prep(rrd, rra_step_cnt,
rra_begin, rrd_file,
elapsed_pdp_st,
proc_pdp_cnt,
&last_seasonal_coef,
&seasonal_coef,
pdp_temp, rra_current,
- skip_update, schedule_smooth) == -1)
- {
+ skip_update, schedule_smooth) == -1) {
goto err_free_coefficients;
}
- if (update_aberrant_cdps(rrd, rrd_file, rra_begin, rra_current,
- elapsed_pdp_st, pdp_temp, &seasonal_coef) == -1)
- {
+ if (update_aberrant_cdps(rrd, rrd_file, rra_begin, rra_current,
+ elapsed_pdp_st, pdp_temp,
+ &seasonal_coef) == -1) {
goto err_free_coefficients;
}
- if (write_to_rras(rrd, rrd_file, rra_step_cnt, rra_begin,
- rra_current, *current_time, skip_update, pcdp_summary) == -1)
- {
+ if (write_to_rras(rrd, rrd_file, rra_step_cnt, rra_begin,
+ rra_current, *current_time, skip_update,
+ pcdp_summary) == -1) {
goto err_free_coefficients;
}
- } /* endif a pdp_st has occurred */
+ } /* endif a pdp_st has occurred */
rrd->live_head->last_up = *current_time;
rrd->live_head->last_up_usec = *current_time_usec;
free(last_seasonal_coef);
return 0;
-err_free_coefficients:
+ err_free_coefficients:
free(seasonal_coef);
free(last_seasonal_coef);
return -1;
* Returns 0 on success, -1 on error.
*/
static int parse_ds(
- rrd_t *rrd, char **updvals, long *tmpl_idx, char *input,
- unsigned long tmpl_cnt, time_t *current_time,
- unsigned long *current_time_usec, int version)
+ rrd_t *rrd,
+ char **updvals,
+ long *tmpl_idx,
+ char *input,
+ unsigned long tmpl_cnt,
+ time_t *current_time,
+ unsigned long *current_time_usec,
+ int version)
{
- char *p;
+ char *p;
unsigned long i;
- char timesyntax;
+ char timesyntax;
updvals[0] = input;
/* initialize all ds input to unknown except the first one
timesyntax = ':';
} else {
rrd_set_error("expected timestamp not found in data source from %s",
- input);
+ input);
return -1;
}
*p = '\0';
i = 1;
- updvals[tmpl_idx[i++]] = p+1;
+ updvals[tmpl_idx[i++]] = p + 1;
while (*(++p)) {
if (*p == ':') {
*p = '\0';
if (i < tmpl_cnt) {
- updvals[tmpl_idx[i++]] = p+1;
+ updvals[tmpl_idx[i++]] = p + 1;
}
}
}
if (i != tmpl_cnt) {
rrd_set_error("expected %lu data source readings (got %lu) from %s",
- tmpl_cnt - 1, i, input);
+ tmpl_cnt - 1, i, input);
return -1;
}
- if (get_time_from_reading(rrd, timesyntax, updvals,
- current_time, current_time_usec,
- version) == -1) {
+ if (get_time_from_reading(rrd, timesyntax, updvals,
+ current_time, current_time_usec,
+ version) == -1) {
return -1;
}
return 0;
* Returns 0 on success, -1 on error.
*/
static int get_time_from_reading(
- rrd_t *rrd, char timesyntax, char **updvals,
- time_t *current_time, unsigned long *current_time_usec,
+ rrd_t *rrd,
+ char timesyntax,
+ char **updvals,
+ time_t *current_time,
+ unsigned long *current_time_usec,
int version)
{
double tmp;
struct timeval tmp_time; /* used for time conversion */
/* get the time from the reading ... handle N */
- if (timesyntax == '@') { /* at-style */
+ if (timesyntax == '@') { /* at-style */
if ((parsetime_error = parsetime(updvals[0], &ds_tv))) {
rrd_set_error("ds time: %s: %s", updvals[0], parsetime_error);
return -1;
}
if (ds_tv.type == RELATIVE_TO_END_TIME ||
- ds_tv.type == RELATIVE_TO_START_TIME) {
+ ds_tv.type == RELATIVE_TO_START_TIME) {
rrd_set_error("specifying time relative to the 'start' "
- "or 'end' makes no sense here: %s", updvals[0]);
+ "or 'end' makes no sense here: %s", updvals[0]);
return -1;
}
- *current_time = mktime(&ds_tv.tm) + ds_tv.offset;
- *current_time_usec = 0; /* FIXME: how to handle usecs here ? */
+ *current_time = mktime(&ds_tv.tm) +ds_tv.offset;
+ *current_time_usec = 0; /* FIXME: how to handle usecs here ? */
} else if (strcmp(updvals[0], "N") == 0) {
gettimeofday(&tmp_time, 0);
normalize_time(&tmp_time);
*current_time_usec = 0;
if (*current_time < rrd->live_head->last_up ||
- (*current_time == rrd->live_head->last_up &&
- (long) *current_time_usec <=
- (long) rrd->live_head->last_up_usec)) {
+ (*current_time == rrd->live_head->last_up &&
+ (long) *current_time_usec <= (long) rrd->live_head->last_up_usec)) {
rrd_set_error("illegal attempt to update using time %ld when "
- "last update time is %ld (minimum one second step)",
- *current_time, rrd->live_head->last_up);
+ "last update time is %ld (minimum one second step)",
+ *current_time, rrd->live_head->last_up);
return -1;
}
return 0;
* Returns 0 on success, -1 on error.
*/
static int update_pdp_prep(
- rrd_t *rrd, char **updvals,
- rrd_value_t *pdp_new, double interval)
+ rrd_t *rrd,
+ char **updvals,
+ rrd_value_t *pdp_new,
+ double interval)
{
- unsigned long ds_idx;
- int ii;
+ unsigned long ds_idx;
+ int ii;
char *endptr; /* used in the conversion */
- double rate;
+ double rate;
char *old_locale;
enum dst_en dst_idx;
* accidently specified a value for the DST_CDEF. To handle this case,
* an extra check is required. */
- if ((updvals[ds_idx+1][0] != 'U') &&
- (dst_idx != DST_CDEF) &&
- rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) {
+ if ((updvals[ds_idx + 1][0] != 'U') &&
+ (dst_idx != DST_CDEF) &&
+ rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt >= interval) {
rate = DNAN;
/* pdp_new contains rate * time ... eg the bytes transferred during
* the interval. Doing it this way saves a lot of math operations
*/
switch (dst_idx) {
- case DST_COUNTER:
- case DST_DERIVE:
- for (ii = 0; updvals[ds_idx + 1][ii] != '\0'; ii++) {
- if ((updvals[ds_idx + 1][ii] < '0' || updvals[ds_idx + 1][ii] > '9')
- && (ii != 0 && updvals[ds_idx + 1][ii] != '-')) {
- rrd_set_error("not a simple integer: '%s'", updvals[ds_idx + 1]);
- return -1;
- }
- }
- if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') {
- pdp_new[ds_idx] = rrd_diff(updvals[ds_idx+1], rrd->pdp_prep[ds_idx].last_ds);
- if (dst_idx == DST_COUNTER) {
- /* simple overflow catcher. This will fail
- * terribly for non 32 or 64 bit counters
- * ... are there any others in SNMP land?
- */
- if (pdp_new[ds_idx] < (double) 0.0)
- pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */
- if (pdp_new[ds_idx] < (double) 0.0)
- pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */
- }
- rate = pdp_new[ds_idx] / interval;
- } else {
- pdp_new[ds_idx] = DNAN;
- }
- break;
- case DST_ABSOLUTE:
- old_locale = setlocale(LC_NUMERIC, "C");
- errno = 0;
- pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr);
- setlocale(LC_NUMERIC, old_locale);
- if (errno > 0) {
- rrd_set_error("converting '%s' to float: %s",
- updvals[ds_idx + 1], rrd_strerror(errno));
- return -1;
- };
- if (endptr[0] != '\0') {
- rrd_set_error("conversion of '%s' to float not complete: tail '%s'",
- updvals[ds_idx + 1], endptr);
- return -1;
- }
- rate = pdp_new[ds_idx] / interval;
- break;
- case DST_GAUGE:
- errno = 0;
- old_locale = setlocale(LC_NUMERIC, "C");
- pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr) * interval;
- setlocale(LC_NUMERIC, old_locale);
- if (errno) {
- rrd_set_error("converting '%s' to float: %s",
- updvals[ds_idx + 1], rrd_strerror(errno));
- return -1;
- };
- if (endptr[0] != '\0') {
- rrd_set_error("conversion of '%s' to float not complete: tail '%s'",
- updvals[ds_idx + 1], endptr);
- return -1;
- }
- rate = pdp_new[ds_idx] / interval;
- break;
- default:
- rrd_set_error("rrd contains unknown DS type : '%s'",
- rrd->ds_def[ds_idx].dst);
- return -1;
+ case DST_COUNTER:
+ case DST_DERIVE:
+ for (ii = 0; updvals[ds_idx + 1][ii] != '\0'; ii++) {
+ if ((updvals[ds_idx + 1][ii] < '0'
+ || updvals[ds_idx + 1][ii] > '9')
+ && (ii != 0 && updvals[ds_idx + 1][ii] != '-')) {
+ rrd_set_error("not a simple integer: '%s'",
+ updvals[ds_idx + 1]);
+ return -1;
+ }
+ }
+ if (rrd->pdp_prep[ds_idx].last_ds[0] != 'U') {
+ pdp_new[ds_idx] =
+ rrd_diff(updvals[ds_idx + 1],
+ rrd->pdp_prep[ds_idx].last_ds);
+ if (dst_idx == DST_COUNTER) {
+ /* simple overflow catcher. This will fail
+ * terribly for non 32 or 64 bit counters
+ * ... are there any others in SNMP land?
+ */
+ if (pdp_new[ds_idx] < (double) 0.0)
+ pdp_new[ds_idx] += (double) 4294967296.0; /* 2^32 */
+ if (pdp_new[ds_idx] < (double) 0.0)
+ pdp_new[ds_idx] += (double) 18446744069414584320.0; /* 2^64-2^32 */
+ }
+ rate = pdp_new[ds_idx] / interval;
+ } else {
+ pdp_new[ds_idx] = DNAN;
+ }
+ break;
+ case DST_ABSOLUTE:
+ old_locale = setlocale(LC_NUMERIC, "C");
+ errno = 0;
+ pdp_new[ds_idx] = strtod(updvals[ds_idx + 1], &endptr);
+ setlocale(LC_NUMERIC, old_locale);
+ if (errno > 0) {
+ rrd_set_error("converting '%s' to float: %s",
+ updvals[ds_idx + 1], rrd_strerror(errno));
+ return -1;
+ };
+ if (endptr[0] != '\0') {
+ rrd_set_error
+ ("conversion of '%s' to float not complete: tail '%s'",
+ updvals[ds_idx + 1], endptr);
+ return -1;
+ }
+ rate = pdp_new[ds_idx] / interval;
+ break;
+ case DST_GAUGE:
+ errno = 0;
+ old_locale = setlocale(LC_NUMERIC, "C");
+ pdp_new[ds_idx] =
+ strtod(updvals[ds_idx + 1], &endptr) * interval;
+ setlocale(LC_NUMERIC, old_locale);
+ if (errno) {
+ rrd_set_error("converting '%s' to float: %s",
+ updvals[ds_idx + 1], rrd_strerror(errno));
+ return -1;
+ };
+ if (endptr[0] != '\0') {
+ rrd_set_error
+ ("conversion of '%s' to float not complete: tail '%s'",
+ updvals[ds_idx + 1], endptr);
+ return -1;
+ }
+ rate = pdp_new[ds_idx] / interval;
+ break;
+ default:
+ rrd_set_error("rrd contains unknown DS type : '%s'",
+ rrd->ds_def[ds_idx].dst);
+ return -1;
}
/* break out of this for loop if the error string is set */
if (rrd_test_error()) {
* if any of these occur it becomes unknown ...
* sorry folks ... */
if (!isnan(rate) &&
- ((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) &&
- rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) ||
- (!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) &&
- rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) {
+ ((!isnan(rrd->ds_def[ds_idx].par[DS_max_val].u_val) &&
+ rate > rrd->ds_def[ds_idx].par[DS_max_val].u_val) ||
+ (!isnan(rrd->ds_def[ds_idx].par[DS_min_val].u_val) &&
+ rate < rrd->ds_def[ds_idx].par[DS_min_val].u_val))) {
pdp_new[ds_idx] = DNAN;
}
} else {
/* make a copy of the command line argument for the next run */
#ifdef DEBUG
fprintf(stderr, "prep ds[%lu]\t"
- "last_arg '%s'\t"
- "this_arg '%s'\t"
- "pdp_new %10.2f\n",
- ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], pdp_new[ds_idx]);
+ "last_arg '%s'\t"
+ "this_arg '%s'\t"
+ "pdp_new %10.2f\n",
+ ds_idx, rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
+ pdp_new[ds_idx]);
#endif
- strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx+1], LAST_DS_LEN - 1);
- rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN-1] = '\0';
+ strncpy(rrd->pdp_prep[ds_idx].last_ds, updvals[ds_idx + 1],
+ LAST_DS_LEN - 1);
+ rrd->pdp_prep[ds_idx].last_ds[LAST_DS_LEN - 1] = '\0';
}
return 0;
}
* and the time between the last PDP and the current time in post_int.
*/
static int calculate_elapsed_steps(
- rrd_t *rrd,
- unsigned long current_time,
+ rrd_t *rrd,
+ unsigned long current_time,
unsigned long current_time_usec,
double interval,
double *pre_int,
double *post_int,
- unsigned long *proc_pdp_cnt)
+ unsigned long *proc_pdp_cnt)
{
unsigned long proc_pdp_st; /* which pdp_st was the last to be processed */
unsigned long occu_pdp_st; /* when was the pdp_st before the last update
if (occu_pdp_st > proc_pdp_st) {
/* OK we passed the pdp_st moment */
- *pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data
- * occurred before the latest
- * pdp_st moment*/
- *pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */
- *post_int = occu_pdp_age; /* how much after it */
+ *pre_int = (long) occu_pdp_st - rrd->live_head->last_up; /* how much of the input data
+ * occurred before the latest
+ * pdp_st moment*/
+ *pre_int -= ((double) rrd->live_head->last_up_usec) / 1e6f; /* adjust usecs */
+ *post_int = occu_pdp_age; /* how much after it */
*post_int += ((double) current_time_usec) / 1e6f; /* adjust usecs */
} else {
*pre_int = interval;
#ifdef DEBUG
printf("proc_pdp_age %lu\t"
- "proc_pdp_st %lu\t"
- "occu_pfp_age %lu\t"
- "occu_pdp_st %lu\t"
- "int %lf\t"
- "pre_int %lf\t"
- "post_int %lf\n", proc_pdp_age, proc_pdp_st,
- occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int);
+ "proc_pdp_st %lu\t"
+ "occu_pfp_age %lu\t"
+ "occu_pdp_st %lu\t"
+ "int %lf\t"
+ "pre_int %lf\t"
+ "post_int %lf\n", proc_pdp_age, proc_pdp_st,
+ occu_pdp_age, occu_pdp_st, interval, *pre_int, *post_int);
#endif
/* compute the number of elapsed pdp_st moments */
* Increment the PDP values by the values in pdp_new, or else initialize them.
*/
static void simple_update(
- rrd_t *rrd, double interval, rrd_value_t *pdp_new)
+ rrd_t *rrd,
+ double interval,
+ rrd_value_t *pdp_new)
{
- int i;
- for (i = 0; i < (signed)rrd->stat_head->ds_cnt; i++) {
+ int i;
+
+ for (i = 0; i < (signed) rrd->stat_head->ds_cnt; i++) {
if (isnan(pdp_new[i])) {
/* this is not really accurate if we use subsecond data arrival time
should have thought of it when going subsecond resolution ...
sorry next format change we will have it! */
- rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt += floor(interval);
+ rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt +=
+ floor(interval);
} else {
if (isnan(rrd->pdp_prep[i].scratch[PDP_val].u_val)) {
rrd->pdp_prep[i].scratch[PDP_val].u_val = pdp_new[i];
}
#ifdef DEBUG
fprintf(stderr,
- "NO PDP ds[%i]\t"
- "value %10.2f\t"
- "unkn_sec %5lu\n",
- i,
- rrd->pdp_prep[i].scratch[PDP_val].u_val,
- rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
+ "NO PDP ds[%i]\t"
+ "value %10.2f\t"
+ "unkn_sec %5lu\n",
+ i,
+ rrd->pdp_prep[i].scratch[PDP_val].u_val,
+ rrd->pdp_prep[i].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
}
}
* Returns 0 on success, -1 on error.
*/
static int process_all_pdp_st(
- rrd_t *rrd, double interval, double pre_int, double post_int,
- unsigned long elapsed_pdp_st, rrd_value_t *pdp_new, rrd_value_t *pdp_temp)
+ rrd_t *rrd,
+ double interval,
+ double pre_int,
+ double post_int,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp)
{
unsigned long ds_idx;
+
/* in pdp_prep[].scratch[PDP_val].u_val we have collected
rate*seconds which occurred up to the last run.
pdp_new[] contains rate*seconds from the latest run.
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
if (process_pdp_st(rrd, ds_idx, interval, pre_int, post_int,
- elapsed_pdp_st * rrd->stat_head->pdp_step,
- pdp_new, pdp_temp) == -1) {
+ elapsed_pdp_st * rrd->stat_head->pdp_step,
+ pdp_new, pdp_temp) == -1) {
return -1;
}
#ifdef DEBUG
fprintf(stderr, "PDP UPD ds[%lu]\t"
- "pdp_temp %10.2f\t"
- "new_prep %10.2f\t"
- "new_unkn_sec %5lu\n",
- ds_idx, pdp_temp[ds_idx],
- rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val,
- rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt);
+ "pdp_temp %10.2f\t"
+ "new_prep %10.2f\t"
+ "new_unkn_sec %5lu\n",
+ ds_idx, pdp_temp[ds_idx],
+ rrd->pdp_prep[ds_idx].scratch[PDP_val].u_val,
+ rrd->pdp_prep[ds_idx].scratch[PDP_unkn_sec_cnt].u_cnt);
#endif
}
return 0;
*
* Returns 0 on success, -1 on error.
*/
-static int process_pdp_st(rrd_t *rrd, unsigned long ds_idx, double interval,
- double pre_int, double post_int, long diff_pdp_st,
- rrd_value_t *pdp_new, rrd_value_t *pdp_temp)
+static int process_pdp_st(
+ rrd_t *rrd,
+ unsigned long ds_idx,
+ double interval,
+ double pre_int,
+ double post_int,
+ long diff_pdp_st,
+ rrd_value_t *pdp_new,
+ rrd_value_t *pdp_temp)
{
- int i;
+ int i;
+
/* update pdp_prep to the current pdp_st. */
double pre_unknown = 0.0;
- unival *scratch = rrd->pdp_prep[ds_idx].scratch;
+ unival *scratch = rrd->pdp_prep[ds_idx].scratch;
unsigned long mrhb = rrd->ds_def[ds_idx].par[DS_mrhb_cnt].u_cnt;
- rpnstack_t rpnstack; /* used for COMPUTE DS */
+ rpnstack_t rpnstack; /* used for COMPUTE DS */
+
rpnstack_init(&rpnstack);
} else {
if (isnan(scratch[PDP_val].u_val)) {
scratch[PDP_val].u_val = 0;
- }
+ }
scratch[PDP_val].u_val += pdp_new[ds_idx] / interval * pre_int;
}
/* if too much of the pdp_prep is unknown we dump it */
/* if the interval is larger thatn mrhb we get NAN */
if ((interval > mrhb) ||
- (diff_pdp_st <= (signed)scratch[PDP_unkn_sec_cnt].u_cnt)) {
+ (diff_pdp_st <= (signed) scratch[PDP_unkn_sec_cnt].u_cnt)) {
pdp_temp[ds_idx] = DNAN;
} else {
- pdp_temp[ds_idx] = scratch[PDP_val].u_val /
- ((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) - pre_unknown);
+ pdp_temp[ds_idx] = scratch[PDP_val].u_val /
+ ((double) (diff_pdp_st - scratch[PDP_unkn_sec_cnt].u_cnt) -
+ pre_unknown);
}
/* process CDEF data sources; remember each CDEF DS can
if (dst_conv(rrd->ds_def[ds_idx].dst) == DST_CDEF) {
rpnp_t *rpnp;
- rpnp = rpn_expand((rpn_cdefds_t *)&(rrd->ds_def[ds_idx].par[DS_cdef]));
+ rpnp =
+ rpn_expand((rpn_cdefds_t *) &(rrd->ds_def[ds_idx].par[DS_cdef]));
/* substitute data values for OP_VARIABLE nodes */
for (i = 0; rpnp[i].op != OP_END; i++) {
if (rpnp[i].op == OP_VARIABLE) {
* Returns 0 on success, -1 on error
*/
static int update_all_cdp_prep(
- rrd_t *rrd, unsigned long *rra_step_cnt, unsigned long rra_begin,
- rrd_file_t *rrd_file, unsigned long elapsed_pdp_st, unsigned long proc_pdp_cnt,
- rrd_value_t **last_seasonal_coef, rrd_value_t **seasonal_coef,
- rrd_value_t *pdp_temp, unsigned long *rra_current,
- unsigned long *skip_update, int *schedule_smooth)
+ rrd_t *rrd,
+ unsigned long *rra_step_cnt,
+ unsigned long rra_begin,
+ rrd_file_t *rrd_file,
+ unsigned long elapsed_pdp_st,
+ unsigned long proc_pdp_cnt,
+ rrd_value_t **last_seasonal_coef,
+ rrd_value_t **seasonal_coef,
+ rrd_value_t *pdp_temp,
+ unsigned long *rra_current,
+ unsigned long *skip_update,
+ int *schedule_smooth)
{
unsigned long rra_idx;
+
/* index into the CDP scratch array */
enum cf_en current_cf;
unsigned long rra_start;
+
/* number of rows to be updated in an RRA for a data value. */
unsigned long start_pdp_offset;
rra_start = rra_begin;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
current_cf = cf_conv(rrd->rra_def[rra_idx].cf_nam);
- start_pdp_offset = rrd->rra_def[rra_idx].pdp_cnt - proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt;
+ start_pdp_offset =
+ rrd->rra_def[rra_idx].pdp_cnt -
+ proc_pdp_cnt % rrd->rra_def[rra_idx].pdp_cnt;
skip_update[rra_idx] = 0;
if (start_pdp_offset <= elapsed_pdp_st) {
rra_step_cnt[rra_idx] = (elapsed_pdp_st - start_pdp_offset) /
- rrd->rra_def[rra_idx].pdp_cnt + 1;
+ rrd->rra_def[rra_idx].pdp_cnt + 1;
} else {
rra_step_cnt[rra_idx] = 0;
}
/* periodically run a smoother for seasonal effects */
if (do_schedule_smooth(rrd, rra_idx, elapsed_pdp_st)) {
#ifdef DEBUG
- fprintf(stderr, "schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
- rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st,
- rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt);
+ fprintf(stderr,
+ "schedule_smooth: cur_row %lu, elapsed_pdp_st %lu, smooth idx %lu\n",
+ rrd->rra_ptr[rra_idx].cur_row, elapsed_pdp_st,
+ rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].
+ u_cnt);
#endif
*schedule_smooth = 1;
}
if (rrd_test_error())
return -1;
- if (update_cdp_prep(rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt,
- rra_idx, pdp_temp, *last_seasonal_coef, *seasonal_coef,
- current_cf) == -1) {
+ if (update_cdp_prep
+ (rrd, elapsed_pdp_st, start_pdp_offset, rra_step_cnt, rra_idx,
+ pdp_temp, *last_seasonal_coef, *seasonal_coef,
+ current_cf) == -1) {
return -1;
}
- rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
+ rra_start +=
+ rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt *
+ sizeof(rrd_value_t);
}
return 0;
}
* Are we due for a smooth? Also increments our position in the burn-in cycle.
*/
static int do_schedule_smooth(
- rrd_t *rrd, unsigned long rra_idx,
+ rrd_t *rrd,
+ unsigned long rra_idx,
unsigned long elapsed_pdp_st)
{
unsigned long cdp_idx = rra_idx * (rrd->stat_head->ds_cnt);
unsigned long cur_row = rrd->rra_ptr[rra_idx].cur_row;
unsigned long row_cnt = rrd->rra_def[rra_idx].row_cnt;
- unsigned long seasonal_smooth_idx = rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt;
- unsigned long *init_seasonal = &(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt);
+ unsigned long seasonal_smooth_idx =
+ rrd->rra_def[rra_idx].par[RRA_seasonal_smooth_idx].u_cnt;
+ unsigned long *init_seasonal =
+ &(rrd->cdp_prep[cdp_idx].scratch[CDP_init_seasonal].u_cnt);
/* Need to use first cdp parameter buffer to track burnin (burnin requires
* a specific smoothing schedule). The CDP_init_seasonal parameter is
/* here elapsed_pdp_st = rra_step_cnt[rra_idx] because of 1-1 mapping
* between PDP and CDP */
return (cur_row + elapsed_pdp_st >= seasonal_smooth_idx);
- }
+ }
/* can't rely on negative numbers because we are working with
* unsigned values */
return (cur_row + elapsed_pdp_st >= row_cnt
- && cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx);
- }
+ && cur_row + elapsed_pdp_st >= row_cnt + seasonal_smooth_idx);
+ }
/* mark off one of the burn-in cycles */
return (cur_row + elapsed_pdp_st >= row_cnt && ++(*init_seasonal));
}
* Returns 0 on success, -1 on error.
*/
static int update_cdp_prep(
- rrd_t *rrd,
- unsigned long elapsed_pdp_st,
- unsigned long start_pdp_offset,
- unsigned long *rra_step_cnt,
- int rra_idx,
- rrd_value_t *pdp_temp,
- rrd_value_t *last_seasonal_coef,
- rrd_value_t *seasonal_coef,
- int current_cf)
+ rrd_t *rrd,
+ unsigned long elapsed_pdp_st,
+ unsigned long start_pdp_offset,
+ unsigned long *rra_step_cnt,
+ int rra_idx,
+ rrd_value_t *pdp_temp,
+ rrd_value_t *last_seasonal_coef,
+ rrd_value_t *seasonal_coef,
+ int current_cf)
{
unsigned long ds_idx, cdp_idx;
+
/* update CDP_PREP areas */
/* loop over data soures within each RRA */
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
cdp_idx = rra_idx * rrd->stat_head->ds_cnt + ds_idx;
if (rrd->rra_def[rra_idx].pdp_cnt > 1) {
- update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf,
- pdp_temp[ds_idx], rra_step_cnt[rra_idx],
- elapsed_pdp_st, start_pdp_offset,
- rrd->rra_def[rra_idx].pdp_cnt,
- rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val, rra_idx, ds_idx);
- } else {
+ update_cdp(rrd->cdp_prep[cdp_idx].scratch, current_cf,
+ pdp_temp[ds_idx], rra_step_cnt[rra_idx],
+ elapsed_pdp_st, start_pdp_offset,
+ rrd->rra_def[rra_idx].pdp_cnt,
+ rrd->rra_def[rra_idx].par[RRA_cdp_xff_val].u_val,
+ rra_idx, ds_idx);
+ } else {
/* Nothing to consolidate if there's one PDP per CDP. However, if
* we've missed some PDPs, let's update null counters etc. */
if (elapsed_pdp_st > 2) {
- reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef, seasonal_coef,
- rra_idx, ds_idx, cdp_idx, current_cf);
+ reset_cdp(rrd, elapsed_pdp_st, pdp_temp, last_seasonal_coef,
+ seasonal_coef, rra_idx, ds_idx, cdp_idx,
+ current_cf);
}
}
if (rrd_test_error())
return -1;
- } /* endif data sources loop */
+ } /* endif data sources loop */
return 0;
}
unsigned long start_pdp_offset,
unsigned long pdp_cnt,
rrd_value_t xff,
- int i, int ii)
+ int i,
+ int ii)
{
/* shorthand variables */
- rrd_value_t *cdp_val = &scratch[CDP_val].u_val;
- rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val;
- rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val;
+ rrd_value_t *cdp_val = &scratch[CDP_val].u_val;
+ rrd_value_t *cdp_primary_val = &scratch[CDP_primary_val].u_val;
+ rrd_value_t *cdp_secondary_val = &scratch[CDP_secondary_val].u_val;
unsigned long *cdp_unkn_pdp_cnt = &scratch[CDP_unkn_pdp_cnt].u_cnt;
if (rra_step_cnt) {
if (*cdp_unkn_pdp_cnt > pdp_cnt * xff) {
*cdp_primary_val = DNAN;
if (current_cf == CF_AVERAGE) {
- *cdp_val = initialize_average_carry_over(pdp_temp_val, elapsed_pdp_st,
- start_pdp_offset, pdp_cnt);
+ *cdp_val =
+ initialize_average_carry_over(pdp_temp_val,
+ elapsed_pdp_st,
+ start_pdp_offset, pdp_cnt);
} else {
*cdp_val = pdp_temp_val;
}
} else {
- initialize_cdp_val(scratch, current_cf, pdp_temp_val,
- elapsed_pdp_st, start_pdp_offset, pdp_cnt);
- } /* endif meets xff value requirement for a valid value */
+ initialize_cdp_val(scratch, current_cf, pdp_temp_val,
+ elapsed_pdp_st, start_pdp_offset, pdp_cnt);
+ } /* endif meets xff value requirement for a valid value */
/* initialize carry over CDP_unkn_pdp_cnt, this must after CDP_primary_val
* is set because CDP_unkn_pdp_cnt is required to compute that value. */
if (isnan(pdp_temp_val))
*cdp_unkn_pdp_cnt = (elapsed_pdp_st - start_pdp_offset) % pdp_cnt;
else
*cdp_unkn_pdp_cnt = 0;
- } else { /* rra_step_cnt[i] == 0 */
+ } else { /* rra_step_cnt[i] == 0 */
#ifdef DEBUG
if (isnan(*cdp_val)) {
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, DNAN\n",
- i, ii);
+ i, ii);
} else {
fprintf(stderr, "schedule CDP_val update, RRA %d DS %d, %10.2f\n",
- i, ii, *cdp_val);
+ i, ii, *cdp_val);
}
#endif
if (isnan(pdp_temp_val)) {
*cdp_unkn_pdp_cnt += elapsed_pdp_st;
} else {
- *cdp_val = calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st, current_cf, i, ii);
+ *cdp_val =
+ calculate_cdp_val(*cdp_val, pdp_temp_val, elapsed_pdp_st,
+ current_cf, i, ii);
}
}
}
* on the type of consolidation function.
*/
static void initialize_cdp_val(
- unival *scratch,
+ unival *scratch,
int current_cf,
rrd_value_t pdp_temp_val,
- unsigned long elapsed_pdp_st,
+ unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset,
- unsigned long pdp_cnt)
+ unsigned long pdp_cnt)
{
rrd_value_t cum_val, cur_val;
switch (current_cf) {
- case CF_AVERAGE:
- cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0);
- cur_val = IFDNAN(pdp_temp_val, 0.0);
- scratch[CDP_primary_val].u_val =
- (cum_val + cur_val * start_pdp_offset) /
- (pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt);
- scratch[CDP_val].u_val = initialize_average_carry_over(
- pdp_temp_val, elapsed_pdp_st, start_pdp_offset, pdp_cnt);
- break;
- case CF_MAXIMUM:
- cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF);
- cur_val = IFDNAN(pdp_temp_val, -DINF);
+ case CF_AVERAGE:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, 0.0);
+ cur_val = IFDNAN(pdp_temp_val, 0.0);
+ scratch[CDP_primary_val].u_val =
+ (cum_val + cur_val * start_pdp_offset) /
+ (pdp_cnt - scratch[CDP_unkn_pdp_cnt].u_cnt);
+ scratch[CDP_val].u_val =
+ initialize_average_carry_over(pdp_temp_val, elapsed_pdp_st,
+ start_pdp_offset, pdp_cnt);
+ break;
+ case CF_MAXIMUM:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, -DINF);
+ cur_val = IFDNAN(pdp_temp_val, -DINF);
#if 0
#ifdef DEBUG
- if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
- fprintf(stderr,
- "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
- i, ii);
- exit(-1);
- }
+ if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
+ fprintf(stderr,
+ "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
+ i, ii);
+ exit(-1);
+ }
#endif
#endif
- if (cur_val > cum_val)
- scratch[CDP_primary_val].u_val = cur_val;
- else
- scratch[CDP_primary_val].u_val = cum_val;
- /* initialize carry over value */
- scratch[CDP_val].u_val = pdp_temp_val;
- break;
- case CF_MINIMUM:
- cum_val = IFDNAN(scratch[CDP_val].u_val, DINF);
- cur_val = IFDNAN(pdp_temp_val, DINF);
+ if (cur_val > cum_val)
+ scratch[CDP_primary_val].u_val = cur_val;
+ else
+ scratch[CDP_primary_val].u_val = cum_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
+ case CF_MINIMUM:
+ cum_val = IFDNAN(scratch[CDP_val].u_val, DINF);
+ cur_val = IFDNAN(pdp_temp_val, DINF);
#if 0
#ifdef DEBUG
- if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
- fprintf(stderr, "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!",
- i, ii);
- exit(-1);
- }
+ if (isnan(scratch[CDP_val].u_val) && isnan(pdp_temp)) {
+ fprintf(stderr,
+ "RRA %lu, DS %lu, both CDP_val and pdp_temp are DNAN!", i,
+ ii);
+ exit(-1);
+ }
#endif
#endif
- if (cur_val < cum_val)
- scratch[CDP_primary_val].u_val = cur_val;
- else
- scratch[CDP_primary_val].u_val = cum_val;
- /* initialize carry over value */
- scratch[CDP_val].u_val = pdp_temp_val;
- break;
- case CF_LAST:
- default:
- scratch[CDP_primary_val].u_val = pdp_temp_val;
- /* initialize carry over value */
- scratch[CDP_val].u_val = pdp_temp_val;
- break;
+ if (cur_val < cum_val)
+ scratch[CDP_primary_val].u_val = cur_val;
+ else
+ scratch[CDP_primary_val].u_val = cum_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
+ case CF_LAST:
+ default:
+ scratch[CDP_primary_val].u_val = pdp_temp_val;
+ /* initialize carry over value */
+ scratch[CDP_val].u_val = pdp_temp_val;
+ break;
}
}
*/
static void reset_cdp(
rrd_t *rrd,
- unsigned long elapsed_pdp_st,
+ unsigned long elapsed_pdp_st,
rrd_value_t *pdp_temp,
rrd_value_t *last_seasonal_coef,
rrd_value_t *seasonal_coef,
- int rra_idx, int ds_idx, int cdp_idx,
+ int rra_idx,
+ int ds_idx,
+ int cdp_idx,
enum cf_en current_cf)
{
- unival *scratch = rrd->cdp_prep[cdp_idx].scratch;
+ unival *scratch = rrd->cdp_prep[cdp_idx].scratch;
switch (current_cf) {
- case CF_AVERAGE:
- default:
- scratch[CDP_primary_val].u_val = pdp_temp[ds_idx];
- scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx];
- break;
- case CF_SEASONAL:
- case CF_DEVSEASONAL:
- /* need to update cached seasonal values, so they are consistent
- * with the bulk update */
- /* WARNING: code relies on the fact that CDP_hw_last_seasonal and
- * CDP_last_deviation are the same. */
- scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx];
- scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx];
- break;
- case CF_HWPREDICT:
- case CF_MHWPREDICT:
- /* need to update the null_count and last_null_count.
- * even do this for non-DNAN pdp_temp because the
- * algorithm is not learning from batch updates. */
- scratch[CDP_null_count].u_cnt += elapsed_pdp_st;
- scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1;
- /* fall through */
- case CF_DEVPREDICT:
- scratch[CDP_primary_val].u_val = DNAN;
- scratch[CDP_secondary_val].u_val = DNAN;
- break;
- case CF_FAILURES:
- /* do not count missed bulk values as failures */
- scratch[CDP_primary_val].u_val = 0;
- scratch[CDP_secondary_val].u_val = 0;
- /* need to reset violations buffer.
- * could do this more carefully, but for now, just
- * assume a bulk update wipes away all violations. */
- erase_violations(rrd, cdp_idx, rra_idx);
- break;
+ case CF_AVERAGE:
+ default:
+ scratch[CDP_primary_val].u_val = pdp_temp[ds_idx];
+ scratch[CDP_secondary_val].u_val = pdp_temp[ds_idx];
+ break;
+ case CF_SEASONAL:
+ case CF_DEVSEASONAL:
+ /* need to update cached seasonal values, so they are consistent
+ * with the bulk update */
+ /* WARNING: code relies on the fact that CDP_hw_last_seasonal and
+ * CDP_last_deviation are the same. */
+ scratch[CDP_hw_last_seasonal].u_val = last_seasonal_coef[ds_idx];
+ scratch[CDP_hw_seasonal].u_val = seasonal_coef[ds_idx];
+ break;
+ case CF_HWPREDICT:
+ case CF_MHWPREDICT:
+ /* need to update the null_count and last_null_count.
+ * even do this for non-DNAN pdp_temp because the
+ * algorithm is not learning from batch updates. */
+ scratch[CDP_null_count].u_cnt += elapsed_pdp_st;
+ scratch[CDP_last_null_count].u_cnt += elapsed_pdp_st - 1;
+ /* fall through */
+ case CF_DEVPREDICT:
+ scratch[CDP_primary_val].u_val = DNAN;
+ scratch[CDP_secondary_val].u_val = DNAN;
+ break;
+ case CF_FAILURES:
+ /* do not count missed bulk values as failures */
+ scratch[CDP_primary_val].u_val = 0;
+ scratch[CDP_secondary_val].u_val = 0;
+ /* need to reset violations buffer.
+ * could do this more carefully, but for now, just
+ * assume a bulk update wipes away all violations. */
+ erase_violations(rrd, cdp_idx, rra_idx);
+ break;
}
}
static rrd_value_t initialize_average_carry_over(
- rrd_value_t pdp_temp_val,
+ rrd_value_t pdp_temp_val,
unsigned long elapsed_pdp_st,
unsigned long start_pdp_offset,
unsigned long pdp_cnt)
/* initialize carry over value */
if (isnan(pdp_temp_val)) {
return DNAN;
- }
+ }
return pdp_temp_val * ((elapsed_pdp_st - start_pdp_offset) % pdp_cnt);
}
rrd_value_t cdp_val,
rrd_value_t pdp_temp_val,
unsigned long elapsed_pdp_st,
- int current_cf, int i, int ii)
+ int current_cf,
+ int i,
+ int ii)
{
if (isnan(cdp_val)) {
if (current_cf == CF_AVERAGE) {
}
#ifdef DEBUG
fprintf(stderr, "Initialize CDP_val for RRA %d DS %d: %10.2f\n",
- i, ii, pdp_temp_val);
+ i, ii, pdp_temp_val);
#endif
return pdp_temp_val;
- }
- if (current_cf == CF_AVERAGE)
+ }
+ if (current_cf == CF_AVERAGE)
return cdp_val + pdp_temp_val * elapsed_pdp_st;
if (current_cf == CF_MINIMUM)
return (pdp_temp_val < cdp_val) ? pdp_temp_val : cdp_val;
* Return 0 on success, -1 on error.
*/
static int update_aberrant_cdps(
- rrd_t *rrd, rrd_file_t *rrd_file, unsigned long rra_begin,
- unsigned long *rra_current, unsigned long elapsed_pdp_st,
- rrd_value_t *pdp_temp, rrd_value_t **seasonal_coef)
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin,
+ unsigned long *rra_current,
+ unsigned long elapsed_pdp_st,
+ rrd_value_t *pdp_temp,
+ rrd_value_t **seasonal_coef)
{
unsigned long rra_idx, ds_idx, j;
* are assigned to the first CDP to be generated
* since the last update. */
unsigned short scratch_idx;
- unsigned long rra_start;
- enum cf_en current_cf;
+ unsigned long rra_start;
+ enum cf_en current_cf;
/* this loop is only entered if elapsed_pdp_st < 3 */
for (j = elapsed_pdp_st, scratch_idx = CDP_primary_val;
- j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
+ j > 0 && j < 3; j--, scratch_idx = CDP_secondary_val) {
rra_start = rra_begin;
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; rra_idx++) {
if (rrd->rra_def[rra_idx].pdp_cnt == 1) {
/* loop over data soures within each RRA */
for (ds_idx = 0; ds_idx < rrd->stat_head->ds_cnt; ds_idx++) {
update_aberrant_CF(rrd, pdp_temp[ds_idx], current_cf,
- rra_idx * (rrd->stat_head->ds_cnt) + ds_idx,
- rra_idx, ds_idx, scratch_idx, *seasonal_coef);
+ rra_idx * (rrd->stat_head->ds_cnt) +
+ ds_idx, rra_idx, ds_idx, scratch_idx,
+ *seasonal_coef);
}
}
- rra_start += rrd->rra_def[rra_idx].row_cnt
- * rrd->stat_head->ds_cnt
- * sizeof(rrd_value_t);
+ rra_start += rrd->rra_def[rra_idx].row_cnt
+ * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
}
}
return 0;
* Return 0 on success, -1 on error.
*/
static int write_to_rras(
- rrd_t *rrd,
- rrd_file_t *rrd_file,
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
unsigned long *rra_step_cnt,
- unsigned long rra_begin,
+ unsigned long rra_begin,
unsigned long *rra_current,
time_t current_time,
unsigned long *skip_update,
info_t **pcdp_summary)
{
unsigned long rra_idx;
- unsigned long rra_start;
+ unsigned long rra_start;
unsigned long rra_pos_tmp; /* temporary byte pointer. */
time_t rra_time = 0; /* time of update for a RRA */
fprintf(stderr, " -- RRA Preseek %ld\n", rrd_file->pos);
#endif
rrd->rra_ptr[rra_idx].cur_row++;
- if (rrd->rra_ptr[rra_idx].cur_row >= rrd->rra_def[rra_idx].row_cnt)
- rrd->rra_ptr[rra_idx].cur_row = 0; /* wrap around */
+ if (rrd->rra_ptr[rra_idx].cur_row >=
+ rrd->rra_def[rra_idx].row_cnt)
+ rrd->rra_ptr[rra_idx].cur_row = 0; /* wrap around */
/* position on the first row */
rra_pos_tmp = rra_start +
- (rrd->stat_head->ds_cnt) * (rrd->rra_ptr[rra_idx].cur_row) *
- sizeof(rrd_value_t);
+ (rrd->stat_head->ds_cnt) * (rrd->rra_ptr[rra_idx].cur_row) *
+ sizeof(rrd_value_t);
if (rra_pos_tmp != *rra_current) {
if (rrd_seek(rrd_file, rra_pos_tmp, SEEK_SET) != 0) {
rrd_set_error("seek error in rrd");
if (!skip_update[rra_idx]) {
if (*pcdp_summary != NULL) {
rra_time = (current_time - current_time
- % (rrd->rra_def[rra_idx].pdp_cnt *
- rrd->stat_head->pdp_step))
- - ((rra_step_cnt[rra_idx] - 1) * rrd->rra_def[rra_idx].pdp_cnt *
- rrd->stat_head->pdp_step);
+ % (rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step))
+ -
+ ((rra_step_cnt[rra_idx] -
+ 1) * rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step);
}
- if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current, CDP_primary_val,
- pcdp_summary, rra_time) == -1)
+ if (write_RRA_row
+ (rrd_file, rrd, rra_idx, rra_current, CDP_primary_val,
+ pcdp_summary, rra_time) == -1)
return -1;
}
/* write other rows of the bulk update, if any */
for (; rra_step_cnt[rra_idx] > 1; rra_step_cnt[rra_idx]--) {
- if (++rrd->rra_ptr[rra_idx].cur_row == rrd->rra_def[rra_idx].row_cnt) {
+ if (++rrd->rra_ptr[rra_idx].cur_row ==
+ rrd->rra_def[rra_idx].row_cnt) {
#ifdef DEBUG
fprintf(stderr,
- "Wraparound for RRA %s, %lu updates left\n",
- rrd->rra_def[rra_idx].cf_nam, rra_step_cnt[rra_idx] - 1);
+ "Wraparound for RRA %s, %lu updates left\n",
+ rrd->rra_def[rra_idx].cf_nam,
+ rra_step_cnt[rra_idx] - 1);
#endif
/* wrap */
rrd->rra_ptr[rra_idx].cur_row = 0;
}
#ifdef DEBUG
fprintf(stderr, " -- Wraparound Postseek %ld\n",
- rrd_file->pos);
+ rrd_file->pos);
#endif
*rra_current = rra_start;
}
if (!skip_update[rra_idx]) {
if (*pcdp_summary != NULL) {
rra_time = (current_time - current_time
- % (rrd->rra_def[rra_idx].pdp_cnt *
- rrd->stat_head->pdp_step))
- -
- ((rra_step_cnt[rra_idx] - 2) * rrd->rra_def[rra_idx].pdp_cnt *
- rrd->stat_head->pdp_step);
+ % (rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step))
+ -
+ ((rra_step_cnt[rra_idx] -
+ 2) * rrd->rra_def[rra_idx].pdp_cnt *
+ rrd->stat_head->pdp_step);
}
if (write_RRA_row(rrd_file, rrd, rra_idx, rra_current,
- CDP_secondary_val, pcdp_summary, rra_time) == -1)
+ CDP_secondary_val, pcdp_summary,
+ rra_time) == -1)
return -1;
}
}
}
rra_start += rrd->rra_def[rra_idx].row_cnt * rrd->stat_head->ds_cnt *
- sizeof(rrd_value_t);
- } /* RRA LOOP */
+ sizeof(rrd_value_t);
+ } /* RRA LOOP */
return 0;
}
iv.u_val = rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val;
/* append info to the return hash */
*pcdp_summary = info_push(*pcdp_summary,
- sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]", rra_time,
- rrd->rra_def[rra_idx].cf_nam,
- rrd->rra_def[rra_idx].pdp_cnt,
- rrd->ds_def[ds_idx].ds_nam), RD_I_VAL, iv);
+ sprintf_alloc("[%d]RRA[%s][%lu]DS[%s]",
+ rra_time,
+ rrd->rra_def[rra_idx].
+ cf_nam,
+ rrd->rra_def[rra_idx].
+ pdp_cnt,
+ rrd->ds_def[ds_idx].
+ ds_nam), RD_I_VAL, iv);
}
if (rrd_write(rrd_file,
- &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].u_val),
- sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
+ &(rrd->cdp_prep[cdp_idx].scratch[CDP_scratch_idx].
+ u_val), sizeof(rrd_value_t)) != sizeof(rrd_value_t)) {
rrd_set_error("writing rrd: %s", rrd_strerror(errno));
return -1;
}
* Returns 0 on success, -1 otherwise
*/
static int smooth_all_rras(
- rrd_t *rrd,
- rrd_file_t *rrd_file,
- unsigned long rra_begin)
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ unsigned long rra_begin)
{
unsigned long rra_start = rra_begin;
unsigned long rra_idx;
+
for (rra_idx = 0; rra_idx < rrd->stat_head->rra_cnt; ++rra_idx) {
if (cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_DEVSEASONAL ||
- cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) {
+ cf_conv(rrd->rra_def[rra_idx].cf_nam) == CF_SEASONAL) {
#ifdef DEBUG
fprintf(stderr, "Running smoother for rra %lu\n", rra_idx);
#endif
return -1;
}
rra_start += rrd->rra_def[rra_idx].row_cnt
- * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
+ * rrd->stat_head->ds_cnt * sizeof(rrd_value_t);
}
return 0;
}
* Returns 0 on success, -1 otherwise
*/
static int write_changes_to_disk(
- rrd_t *rrd, rrd_file_t *rrd_file, int version)
+ rrd_t *rrd,
+ rrd_file_t *rrd_file,
+ int version)
{
- /* we just need to write back the live header portion now*/
+ /* we just need to write back the live header portion now */
if (rrd_seek(rrd_file, (sizeof(stat_head_t)
+ sizeof(ds_def_t) * rrd->stat_head->ds_cnt
+ sizeof(rra_def_t) * rrd->stat_head->rra_cnt),