Abschnitt "Ausblick": Erste Version.
authorFlorian Forster <octo@leeloo.octo.it>
Sat, 19 Feb 2011 17:24:44 +0000 (18:24 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Sat, 19 Feb 2011 17:24:44 +0000 (18:24 +0100)
diplomarbeit.tex

index c090c39..cdcba09 100644 (file)
@@ -1773,10 +1773,59 @@ gib Netzwerk zurück
 \newpage
 \section{Ausblick}
 
-Das würde mir noch einfallen$\ldots$
-
-- SN-Evolution mit Pairwise als „Mischer“.
-- Co-Evolution von Netzwerken und Schnittmustern.
+Die Möglichkeiten, die Evolutionäre Algorithmen bei der Optimierung von
+Sortiernetzwerken bieten, sind durch die in dieser Arbeit vorgestellten
+Herangehensweisen bei weitem nicht erschöpft.
+
+Im Folgenden werden Ansätze umrissen, mit denen an die Untersuchungen in
+dieser Arbeit nahtlos angeknöpft werden könnte.
+
+\subsection{Verwendung des Pairwise-Sorting-Netzwerk in \textsc{SN-Evolution}}
+
+Die aktuelle Implementierung von \textsc{SN-Evolution}
+(Abschnitt~\ref{sect:sn-evolution}) kann sowohl den \emph{bitonen Mischer} als
+auch den \emph{Odd-Even-Mischer} verwenden, um zwei Individuen zu
+rekombinieren. Das \emph{Pairwise-Sorting}-Netzwerk verwendet zwar keinen
+Mischer, es ist aber ebenfalls rekursiv über kleinere Versionen von sich
+selbst definiert. Das heißt, dass \ps{n} aus zwei Instanzen von
+$\ps{\frac{n}{2}}$ und zusätzlichen Komparatoren besteht, die die Eingabe für
+die kleineren Sortiernetzwerke vorbereiten und anschließend für eine sortierte
+Ausgaben sorgen. Anstelle von $\ps{\frac{n}{2}}$ kann man natürlich beliebige
+Sortiernetzwerke mit $\frac{n}{2}$~Leitungen verwenden.
+
+Dies ließe sich für \textsc{SN-Evolution} nutzen, um zwei Individuen zu
+rekombinieren. Da es für das \emph{Pairwise-Sorting}-Netzwerk sehr viele
+\emph{unterscheidliche} Schnittmuster gibt
+(Abbschnitt~\ref{sect:anzahl_schnittmuster}), ist es möglich, dass die
+Verwendung dieser Rekombinationsmethode neue Ergebnisse ermöglicht. Leider
+wird die Aussicht auf Erfolg durch die Tatsache geschmälert, dass keine
+$n$-Schnittmuster für \ps{2n} gefunden werden konnten, die zu besseren
+$n$-Sortiernetzwerken als \ps{n} führen.
+
+\subsection{Kooperation von \textsc{SN-Evolution} und
+\textsc{SN-Evolution-Cut}}
+
+Ähnlich zu der parasitären \emph{Co-Evolution}, die \textit{W.~Daniel Hillis}
+in~\cite{H1992} beschreibt, könnte man die Algorithmen \textsc{SN-Evolution}
+und \textsc{SN-Evolution-Cut} versuchen zu kombinieren. Nach dem Zusammenfügen
+von zwei $n$-Sortiernetzwerken könnte der Algorithmus
+\textsc{SN-Evolution-Cut} beispielsweise einen möglichst guten Schnitt für
+\emph{dieses} Netzwerk ermitteln. Da sich die Lösungen, die Evolutionäre
+Algorithmen in ihre Population aufnehmen, in den ersten Schritten rasch
+verbessern, könnten selbst weniger Iterationen von \textsc{SN-Evolution-Cut}
+die Zwischenlösungen von \textsc{SN-Evolution} deutlich verbessern.
+
+Alternativ könnte man -- analog zur Herangehensweise von \textit{Hillis} --
+eine zweite Population von Schnittmustern evolvieren, die für die
+Sortiernetzwerke in der Population von \textsc{SN-Evolution} besonders gut
+funktionieren. In jeder Iteration wendet man alle oder eine zufällige Menge
+Schnittmuster auf das zusammengeführte Netzwerk an und gibt dem besten
+Ergebnis den Zuschlag. Anschließend erfährt das entsprechende Schnittmuster
+eine Aufwertung, so dass es wahrscheinlicher wird, dass \emph{dieses}
+Schnittmuster zur nächten Generation beiträgt. Im Gegensatz zum Ansatz der
+parasitären Eingaben entsteht eine \emph{Synergie} zweier Populationen, die
+das Gesamtergebnis oder zumindest die Konvergenzgeschwindigkeit verbessern
+könnte.
 
 \newpage
 \section{Implementierung}