Sortiernetzwerke erzeugen kann, die effizienter als das rekursiv aus dem
\emph{bitonen Mischer} aufgebaute \emph{bitone Mergesort}-Netzwerk sind.
Dieses Ergebnis lies sich mit dem \emph{Odd-Even-Merge}-Netzwerk nicht
-wiederholen. Die Sortiernetzwerke, die \textsc{SN-Evolution} unter Verwendung
-des \emph{Odd-Even}-Mischers findet, erreichen das
+erzielen. Die Sortiernetzwerke, die \textsc{SN-Evolution} unter Verwendung des
+\emph{Odd-Even-Merge}-Netzwerks findet, erreichen das
\emph{Odd-Even-Mergesort}-Netzwerk bezüglich Effizienz, übertreffen es aber
nicht. Ein Beispiel für ein entsprechendes Sortiernetzwerk ist in
-Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen. Wenn $n$ keine
-Zweierpotenz ist, kann \textsc{SN-Evolution} unter Umständen Sortiernetzwerke
-ausgeben, die schneller als \oes{n} sind.
+Abbildung~\ref{fig:16-e1-oddeven-1296543330} zu sehen.
+
+Mit einer Gütefunktion, die schnelle Sortiernetzwerke bevorzugt, ist es auch
+mit dem \emph{Odd-Even}-Mischer möglich, dass \textsc{SN-Evolution}
+Sortiernetzwerke zurück gibt, die schneller als \oes{n} sind. Dies geschieht
+beispielsweise bei $n = 11$ und $n = 12$: für diese Leitungszahlen gibt
+\textsc{SN-Evolution} Sortiernetzwerke aus, die nur 9~Schicten benötigen.
+\oes{11} und \oes{12} benötigen jeweils 10~Schichten. Eine Auflistung der
+Ergebnisse von \textsc{SN-Evolution} mit dem \emph{Odd-Even}-Mischer befindet
+sich in Tabelle~\ref{tbl:sn-ev-oem-fast}.
%\begin{figure}
%\begin{center}
%\label{fig:10-e2-1239014566}
%\end{figure}
+\begin{table}\label{tbl:sn-ev-oem-fast}
+\begin{center}
+\rowcolors{4}{black!5}{}
+\begin{tabular}{|r|r|r|r|r|}
+\hline
+Leitungen & \multicolumn{2}{l|}{\textsc{SN-EV} mit \oem{n}} & \multicolumn{2}{|l|}{\oes{n}} \\
+\cline{2-5}
+ & Komp. & Schichten & Komp. & Schichten \\
+\hline
+ 8 & 19 & 6 & 19 & 6 \\
+ 9 & 26 & 8 & 26 & 8 \\
+ 10 & 31 & 9 & 31 & 9 \\
+ 11 & 38 & \Gcell 9 & \Gcell 37 & 10 \\
+ 12 & 43 & \gcell 9 & \gcell 41 & 10 \\
+ 13 & 48 & 10 & 48 & 10 \\
+ 14 & 53 & 10 & 53 & 10 \\
+ 15 & 59 & 10 & 59 & 10 \\
+ 16 & 63 & 10 & 63 & 10 \\
+ 17 & 74 & 12 & 74 & 12 \\
+ 18 & 82 & 13 & 82 & 13 \\
+ 19 & 93 & \Gcell 13 & \Gcell 91 & 14 \\
+ 20 & 97 & 14 & 97 & 14 \\
+ 21 & 108 & \Gcell 14 & \Gcell 107 & 15 \\
+ 22 & 117 & \gcell 14 & \gcell 114 & 15 \\
+ 23 & 129 & \Gcell 14 & \Gcell 122 & 15 \\
+ 24 & 128 & 15 & \gcell 127 & 15 \\
+\hline
+\end{tabular}
+\caption{Übersicht über die Ergebnisse des \textsc{SN-Evolution}-Algorithmus
+ unter Verwendung des \emph{Odd-Even-Merge}-Netzwerks \oem{n}. Der
+ Algorithmus wurde mit dem \emph{Odd-Even-Transpositionsort}-Netzwerk \oet{n}
+ gestartet und nach 2.500.000 Iterationen beendet. Die Bewertungsfunktion
+ nutzte die Konstanten $w_{\mathrm{Basis}} = 0$, $w_{\mathrm{Komparatoren}} =
+ 1$, $w_{\mathrm{Schichten}} = n$.}
+\end{center}
+\end{table}
+
%\input{shmoo-aequivalenz.tex}
\newpage