\item Wie gut die Netzwerke werden, hängt stark vom verwendeten \em{Mischer} ab.
\end{itemize}
-\subsection{Vom evolutionären Algorithmus zu einer Markov-Kette}
+\section{Markov-Kette}
+
+Der evolutionäre Algorithmus aus dem vorherigen Abschnitt verwendete immer
+zwei zufällige Sortiernetzwerke („Individuen“) aus einer Population. Da die
+beiden „Eltern“ zufällig und unabhängig voneinander ausgewählt werden, kann es
+vorkommen, dass das selbe Sortiernetzwerk zweimal verwendet und mit sich
+selbst kombiniert wird.
+
+Macht man diesen Spezialfall zum Regelfall, indem man \emph{immer} das
+aktuelle Netzwerk mit sich selbst kombiniert und anschließend die Hälfte aller
+Leitungen eliminiert, lassen sich einige interessante Beobachtungen anstellen.
+Netzwerke, die aus einem Netzwerk $S_0$ durch die beschriebene Kombination von
+$S_0$ mit sich selbst und anschließendem Eliminieren der Hälfte der Leitungen
+hervorgehen können, heißen \emph{Nachfolger} von $S_0$.
+
+Beim beschriebenen Vorgehen kann man die Sortiernetzwerke als Knoten in einem
+gerichteten Graphen betrachten. Zwei Knoten $V_0$ und $V_1$, die zwei
+Sortiernetzwerke $S_0$ und $S_1$ repräsentieren, sind genau dann mit einer
+Kante ${E_{0,1} = (V_0, V_1)}$ verbunden, wenn $S_1$ ein \emph{Nachfolger} von $S_0$
+ist, das heißt dass man $S_1$ durch die Rekombination von $S_0$ mit sich
+selbst erzeugen kann.
+
+Der Algorithmus {\sc SN-Markov} legt auf diesem Graph einen zufälligen Weg
+(englisch: \textit{random walk}) zurück. Er startet auf einem gegebenen
+Sortiernetzwerk. Um von einem Sortiernetzwerk zum Nächsten zu gelangen
+rekombiniert er das aktuelle Sortiernetzwerk mit sich selbst und erhält so
+einen zufälligen Nachfolger.
\begin{itemize}
-\item Kombiniere immer das aktuelle Netzwerk mit sich selbst.
-\item Kann die Mindestgüte immernoch erreicht werden? ({\em Ich denke schon.})
-\item Anzahl der erreichbaren Sortiernetzwerke.
+ \item $n \leftarrow \mathrm{Input}$
+ \item \texttt{while} \textit{true}
+ \begin{itemize}
+ \item $n \leftarrow \operatorname{recombine} (n, n)$
+ \end{itemize}
\end{itemize}
+\begin{itemize}
+ \item Beste erreichte Netzwerke (gleich zu \emph{OE-Mergesort}).
+ \item Anzahl der erreichbaren Sortiernetzwerke.
+ \item Anzahl der Komparatoren und Anzahl der Schichten der durchlaufenen
+ Netzwerke. (Abbildung~\ref{fig:markov-comparators-16})
+\end{itemize}
+
+\begin{figure}
+ \begin{center}
+ \includegraphics[viewport=0 0 360 216,width=15cm]{images/markov-comparators-16.pdf}
+ \end{center}
+ \caption{Anzahl der Komparatoren von Sortiernetzwerken (mit 16~Leitungen), die von {\sc SN-Markov} durchlaufen wurden.}
+ \label{fig:markov-comparators-16}
+\end{figure}
+
%\input{shmoo-aequivalenz.tex}
\section{Optimierung der Schnitte}