Einleitung: Formulierung bzgl. Komplexität überarbeitet.
authorFlorian Forster <octo@leeloo.octo.it>
Sun, 27 Feb 2011 09:05:53 +0000 (10:05 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Sun, 27 Feb 2011 09:05:53 +0000 (10:05 +0100)
diplomarbeit.tex

index 6a77ae3..0e86f73 100644 (file)
@@ -232,8 +232,8 @@ Sortiereigenschaft \emph{nicht} besitzt, da es in diesem Fall die Folge $(1,
 Insgesamt gibt es $n!$~Permutationen von $n$~Elementen. Wenn ein
 Komparatornetzwerk die Sortiereigenschaft besitzt, bildet es alle diese
 Permutationen auf die sortierte Reihenfolge ab. Allerdings wächst $n!$
-über-exponentiell schnell, so dass ein Ausprobieren aller möglichen
-Permutationen schon bei 16~Leitungen praktisch nicht mehr zu bewerkstelligen
+so schnell, dass ein Ausprobieren aller möglichen Permutationen schon bei
+16~Leitungen praktisch nicht mehr zu bewerkstelligen
 ist.\footnote{1.307.674.368.000 Permutationen}
 
 \label{sect:0-1-prinzip}
@@ -260,26 +260,33 @@ Verhalten jedes einzelnen Komparators nicht: Wenn bei der Permutation eine
 Zahl größer als $a_i$ und eine Zahl kleiner oder gleich $a_i$ verglichen
 wurden, liegen jetzt entsprechend eine Null und eine Eins an, die genauso
 vertauscht werden oder nicht, wie das bei der Permutation der Fall war. Liegen
-zwei Nullen oder zwei Einsen an, entsprechen sie zwei Zahlen kleiner als $a_i$
-oder zwei Zahlen größer oder gleich $a_i$. Da im Fall der 0-1-Folge zwei
-gleiche Zahlen am Komparator anliegen, dürfen wir davon ausgehen, dass sich
-der Komparator so verhält, wie er sich bei der Permutation verhalten hat --
-ohne das Ergebnis zu beeinflussen. Entsprechend kommen an den Ausgängen $i-1$
-und $i$ eine Null und eine Eins in der falschen Reihenfolge an. Das steht im
-Widerspruch zu der Annahme, dass alle 0-1-Folgen sortiert werden.
-
-Im Gegensatz zum Überprüfen aller möglichen Permutationen, was der
-Komplexitätsklasse
-$\Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)$ zuzuordnen ist,
-ist das Überprüfen aller 0-1-Folgen „nur“ mit dem Aufwand $\Theta(2^n)$
-verbunden. Entsprechend ist dieses Verfahren nicht \emph{effizient} -- ein
-schnelleres Verfahren ist bisher allerdings nicht bekannt. Um zu überprüfen,
-ob ein Komparatornetzwerk mit 16~Leitungen die Sortiereigenschaft besitzt,
-sind mit dieser Methode nur 65.536 Tests notwendig -- eine Zahl, die für
-aktuelle Prozessoren keine Herausforderung darstellt. Für die Überprüfung
-eines Komparatornetzwerks mit 32~Leitungen sind jedoch bereits etwa
-4,3~Milliarden Tests notwendig, die einen Rechner durchaus mehrere Minuten
-beschäftigen.
+zwei Nullen oder zwei Einsen an, entsprechen sie zwei Zahlen kleiner als
+$a_i$, beziehungsweise zwei Zahlen größer oder gleich $a_i$. Da im Fall der
+0-1-Folge zwei gleiche Zahlen am Komparator anliegen, dürfen wir davon
+ausgehen, dass sich der Komparator so verhält, wie er sich bei der Permutation
+verhalten hat -- ohne das Ergebnis zu beeinflussen. Entsprechend müssen an den
+Ausgängen $i-1$ und $i$ eine Null und eine Eins in der falschen Reihenfolge
+ankommen. Das steht im Widerspruch zu der Annahme, dass alle 0-1-Folgen
+sortiert werden.
+
+Im Gegensatz zum Überprüfen aller möglichen Permutationen, was mit dem Aufwand
+$\Theta\left(\sqrt{n}\left(\frac{n}{e}\right)^n\right)$ verbunden ist, besitzt
+das Überprüfen aller 0-1-Folgen „nur“ den Aufwand $\Theta(2^n)$. Entsprechend
+ist dieses Verfahren nicht \emph{effizient} -- ein schnelleres Verfahren ist
+bisher allerdings nicht bekannt.
+
+Um zu überprüfen, ob ein Komparatornetzwerk mit 16~Leitungen die
+Sortiereigenschaft besitzt, sind mit dieser Methode nur 65.536 Tests notwendig
+-- eine Zahl, die für aktuelle Prozessoren keine Herausforderung darstellt.
+Für die Überprüfung eines Komparatornetzwerks mit 32~Leitungen sind jedoch
+bereits etwa 4,3~Milliarden Tests notwendig, die einen Rechner durchaus
+mehrere Minuten beschäftigen. Das ist deshalb problematisch, weil die im
+Folgenden vorgestellten \emph{Evolutionären Algorithmen} eine entsprechende
+Überprüfung in jeder Iteration durchführen müssten. Wenn die Überprüfung eines
+Zwischenergebnisses fünf Minuten in Anspruch nimmt, sind für eine Million
+Iterationen fast zehn Jahre Rechenzeit notwendig. Selbst wenn die Berechnung
+auf 1000~Computern mit je 4~Prozessoren verteilt wird, werden über 20~Stunden
+für einen Lauf benötigt.
 
 \subsubsection{Evolutionäre Algorithmen}