Tabelle tbl:ec-ps-32 eingefügt.
authorFlorian Forster <octo@leeloo.octo.it>
Thu, 17 Mar 2011 22:52:32 +0000 (23:52 +0100)
committerFlorian Forster <octo@leeloo.octo.it>
Thu, 17 Mar 2011 22:52:32 +0000 (23:52 +0100)
diplomarbeit.tex

index 2a8eff5..e9203fb 100644 (file)
@@ -426,9 +426,7 @@ zusammenfügen). Da der Begriff des "`mischens"' beziehungsweise der
 "`Mischer"' in der Literatur sehr weit verbreitet ist, werden diese Begriffe
 in dieser Arbeit trotzdem verwendet.}, bilden die Grundlage für die
 beschriebenen evolutionären Algorithmen beziehungsweise dienen als initiale
-Eingabe. Im Folgenden werden daher vier Konstruktionsverfahren vorgestellt.
-
-\todo{Drei oder vier Verfahren? Sprich: Mit oder ohne Pairwise Sorting.}
+Eingabe. Im Folgenden werden daher drei Konstruktionsverfahren vorgestellt.
 
 \subsection{Das Odd-Even-Transpositionsort-Netzwerk}
 \label{sect:odd_even_transpositionsort}
@@ -2722,7 +2720,39 @@ besonders effizient und schnell. Um der Vermutung nachzugehen, dass der
 \textsc{SN-Evolution-Cut}-Algorithmus für $\ps{n = 2^d}$ besonders effiziente
 Schnittmuster findet, wurde \textsc{SN-Evolution-Cut} mit \ps{32} und $k = 1
 \dots 16$ gestartet. Die Ergebnisse sind in Tabelle~\ref{tbl:ec-ps-32}
-zusammengefasst. \todo{Tabelle einfügen.}
+zusammengefasst.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|r|r|}
+    \hline
+    $m$ & Komp. & Schichten \\
+    \hline
+     16 &    69 &        11 \\
+     17 &    77 &        13 \\
+     18 &    89 &        13 \\
+     19 &    91 &        14 \\
+     20 &    97 &        14 \\
+     21 &   107 &        15 \\
+     22 &   114 &        15 \\
+     23 &   122 &        15 \\
+     24 &   127 &        15 \\
+     25 &   138 &        15 \\
+     26 &   146 &        15 \\
+     27 &   155 &        15 \\
+     28 &   161 &        15 \\
+     29 &   171 &        15 \\
+     30 &   178 &        15 \\
+     31 &   186 &        15 \\
+    \hline
+    \end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren und Schichten von $m$-Sortiernetzwerken,
+    die von \textsc{SN-Evolution-Cut} nach 5.000.000 Iterationen aus \ps{32}
+    erzeugt wurden.}
+  \label{tbl:ec-ps-32}
+\end{table}
 
 % Geschwindigkeit
 
@@ -2796,10 +2826,12 @@ wie und warum es jede beliebige Eingabe sortiert.
 
 Bei dem \emph{Pairwise-Sorting}-Netzwerk $\ps{n=2^d}$ ist das anders. Startet
 man \textsc{SN-Evolution-Cut} mit $\operatorname{PS}(32)$ und der Vorgabe,
-16~Leitungen zu entfernen, erhält man ein Sortiernetzwerk, das die gleiche
-Anzahl Komparatoren und Schichten hat wie $\operatorname{PS}(16)$ und
-$\operatorname{OES}(16)$. Eines dieser Sortiernetzwerke ist in
-Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
+16~Leitungen zu entfernen, kann der Algorithmus ein Sortiernetzwerk
+zurückgeben, das die gleiche Anzahl Komparatoren und Schichten wie
+$\operatorname{PS}(16)$ und $\operatorname{OES}(16)$ hat. Eines dieser
+Sortiernetzwerke ist in Abbildung~\ref{fig:16-ec-from-ps32} dargestellt.
+Dieses Ergebnis demonstriert, dass sich die Ergebnisse in den gezeigten
+Tabellen oft durch zusätzliche Iterationen verbessern lassen.
 
 \begin{figure}
   \begin{center}
@@ -2862,13 +2894,14 @@ Netzwerk in schwarz gut zu erkennen.
   \label{fig:16-pairwise}
 \end{figure}
 
-Ein Spezialfall ergibt sich, wenn man \textsc{SN-Evolution-Cut} auf
-$\operatorname{PS}(16)$ anwendet: In diesem Fall kann man durch ein
-8-Schnittmuster das \emph{Odd-Even-Mergesort}-Netzwerk \oes{8} erhalten. Für
-größere Sortiernetzwerke ist dies hingegen nicht mehr möglich, beispielsweise
-kann $\operatorname{PS}(32)$ nicht durch ein 16-Schnittmuster in \oes{16}
-konvertiert werden. Die Verwandtschaft von $\operatorname{PS}(n)$ und \oes{n}
-untersucht \textit{Moritz Mühlenthaler} ausführlich in~\cite{M2009}.
+Ein Spezialfall ergibt sich, wenn \textsc{SN-Evolution-Cut} auf
+$\operatorname{PS}(16)$ angewendet wird: In diesem Fall kann ein
+8-Schnittmuster ausgegeben werden, das \emph{Odd-Even-Mergesort}-Netzwerk
+\oes{8} aus \ps{16} erzeugt.. Für größere Sortiernetzwerke ist dies hingegen
+nicht mehr möglich, beispielsweise kann $\operatorname{PS}(32)$ nicht durch
+ein 16-Schnittmuster in \oes{16} konvertiert werden. Die Verwandtschaft von
+$\operatorname{PS}(n)$ und \oes{n} untersucht \textit{Moritz Mühlenthaler}
+ausführlich in~\cite{M2009}.
 
 \newpage
 \section{Fazit und Ausblick}