2 * GIT - The information manager from hell
4 * Copyright (C) Linus Torvalds, 2005
10 static int unpack_tree(unsigned char *sha1)
16 buffer = read_object_with_reference(sha1, "tree", &size, 0);
19 ret = read_tree(buffer, size, stage);
24 static char *lockfile_name;
26 static void remove_lock_file(void)
29 unlink(lockfile_name);
32 static int path_matches(struct cache_entry *a, struct cache_entry *b)
34 int len = ce_namelen(a);
35 return ce_namelen(b) == len &&
36 !memcmp(a->name, b->name, len);
39 static int same(struct cache_entry *a, struct cache_entry *b)
41 return a->ce_mode == b->ce_mode &&
42 !memcmp(a->sha1, b->sha1, 20);
47 * This removes all trivial merges that don't change the tree
48 * and collapses them to state 0.
50 * _Any_ other merge is left to user policy. That includes "both
51 * created the same file", and "both removed the same file" - which are
52 * trivial, but the user might still want to _note_ it.
54 static struct cache_entry *merge_entries(struct cache_entry *a,
55 struct cache_entry *b,
56 struct cache_entry *c)
58 int len = ce_namelen(a);
61 * Are they all the same filename? We won't do
64 if (ce_namelen(b) != len ||
65 ce_namelen(c) != len ||
66 memcmp(a->name, b->name, len) ||
67 memcmp(a->name, c->name, len))
71 * Ok, all three entries describe the same
72 * filename, but maybe the contents or file
75 * The trivial cases end up being the ones where two
76 * out of three files are the same:
77 * - both destinations the same, trivially take either
78 * - one of the destination versions hasn't changed,
81 * The "all entries exactly the same" case falls out as
82 * a special case of any of the "two same" cases.
84 * Here "a" is "original", and "b" and "c" are the two
85 * trees we are merging.
96 static void trivially_merge_cache(struct cache_entry **src, int nr)
98 static struct cache_entry null_entry;
99 struct cache_entry **dst = src;
100 struct cache_entry *old = &null_entry;
103 struct cache_entry *ce, *result;
107 /* We throw away original cache entries except for the stat information */
115 if (nr > 2 && (result = merge_entries(ce, src[1], src[2])) != NULL) {
117 * See if we can re-use the old CE directly?
118 * That way we get the uptodate stat info.
120 if (path_matches(result, old) && same(result, old))
123 ce->ce_flags &= ~htons(CE_STAGEMASK);
134 static void merge_stat_info(struct cache_entry **src, int nr)
136 static struct cache_entry null_entry;
137 struct cache_entry **dst = src;
138 struct cache_entry *old = &null_entry;
141 struct cache_entry *ce;
145 /* We throw away original cache entries except for the stat information */
153 if (path_matches(ce, old) && same(ce, old))
155 ce->ce_flags &= ~htons(CE_STAGEMASK);
162 static char *read_tree_usage = "read-tree (<sha> | -m <sha1> [<sha2> <sha3>])";
164 int main(int argc, char **argv)
167 unsigned char sha1[20];
168 static char lockfile[MAXPATHLEN+1];
169 const char *indexfile = get_index_file();
171 snprintf(lockfile, sizeof(lockfile), "%s.lock", indexfile);
173 newfd = open(lockfile, O_RDWR | O_CREAT | O_EXCL, 0600);
175 die("unable to create new cachefile");
176 atexit(remove_lock_file);
177 lockfile_name = lockfile;
180 for (i = 1; i < argc; i++) {
181 const char *arg = argv[i];
183 /* "-m" stands for "merge", meaning we start in stage 1 */
184 if (!strcmp(arg, "-m")) {
187 die("-m needs to come first");
189 for (i = 0; i < active_nr; i++) {
190 if (ce_stage(active_cache[i]))
191 die("you need to resolve your current index first");
197 if (get_sha1(arg, sha1) < 0)
198 usage(read_tree_usage);
200 usage(read_tree_usage);
201 if (unpack_tree(sha1) < 0)
202 die("failed to unpack tree object %s", arg);
207 case 4: /* Three-way merge */
208 trivially_merge_cache(active_cache, active_nr);
210 case 2: /* Just read a tree, merge with old cache contents */
211 merge_stat_info(active_cache, active_nr);
214 die("just how do you expect me to merge %d trees?", stage-1);
217 if (write_cache(newfd, active_cache, active_nr) || rename(lockfile, indexfile))
218 die("unable to write new index file");
219 lockfile_name = NULL;