the operator in the example is * not + -- Nick Sharp njsharp bigpond.net.au
[rrdtool.git] / doc / rpntutorial.pod
1 =head1 NAME
2
3 rpntutorial - Reading RRDtool RPN Expressions by Steve Rader
4
5 =head1 DESCRIPTION
6
7 This tutorial should help you get to grips with RRDtool RPN expressions
8 as seen in CDEF arguments of RRDtool graph.
9
10 =head1 Reading Comparison Operators
11
12 The LT, LE, GT, GE and EQ RPN logic operators are not as tricky as
13 they appear.  These operators act on the two values on the stack
14 preceding them (to the left).  Read these two values on the stack
15 from left to right inserting the operator in the middle.  If the
16 resulting statement is true, then replace the three values from the
17 stack with "1".  If the statement if false, replace the three values
18 with "0".
19
20 For example, think about "2,1,GT".  This RPN expression could be
21 read as "is two greater than one?"  The answer to that question is
22 "true".  So the three values should be replaced with "1".  Thus the
23 RPN expression 2,1,GT evaluates to 1.
24
25 Now consider "2,1,LE".  This RPN expression could be read as "is
26 two less than or equal to one?".   The natural response is "no"
27 and thus the RPN expression 2,1,LE evaluates to 0.
28
29 =head1 Reading the IF Operator
30
31 The IF RPN logic operator can be straightforward also.  The key
32 to reading IF operators is to understand that the condition part
33 of the traditional "if X than Y else Z" notation has *already*
34 been evaluated.  So the IF operator acts on only one value on the
35 stack: the third value to the left of the IF value.  The second
36 value to the left of the IF corresponds to the true ("Y") branch.
37 And the first value to the left of the IF corresponds to the false
38 ("Z") branch.  Read the RPN expression "X,Y,Z,IF" from left to
39 right like so: "if X then Y else Z".
40
41 For example, consider "1,10,100,IF".  It looks bizarre to me.
42 But when I read "if 1 then 10 else 100" it's crystal clear: 1 is true
43 so the answer is 10.  Note that only zero is false; all other values
44 are true.  "2,20,200,IF" ("if 2 then 20 else 200") evaluates to 20.
45 And "0,1,2,IF" ("if 0 then 1 else 2) evaluates to 2.
46
47
48 Notice that none of the above examples really simulate the whole
49 "if X then Y else Z" statement.  This is because computer programmers
50 read this statement as "if Some Condition then Y else Z".  So it's
51 important to be able to read IF operators along with the LT, LE,
52 GT, GE and EQ operators.
53
54 =head1 Some Examples
55
56 While compound expressions can look overly complex, they can be
57 considered elegantly simple.  To quickly comprehend RPN expressions,
58 you must know the the algorithm for evaluating RPN expressions:
59 iterate searches from the left to the right looking for an operator.
60 When it's found, apply that operator by popping the operator and some
61 number of values (and by definition, not operators) off the stack.
62
63 For example, the stack "1,2,3,+,+" gets "2,3,+" evaluated (as "2+3")
64 during the first iteration and is replaced by 5.  This results in
65 the stack "1,5,+".  Finally, "1,5,+" is evaluated resulting in the
66 answer 6.  For convenience, it's useful to write this set of
67 operations as:
68
69  1) 1,2,3,+,+    eval is 2,3,+ = 5    result is 1,5,+
70  2) 1,5,+        eval is 1,5,+ = 6    result is 6
71  3) 6
72
73 Let's use that notation to conveniently solve some complex RPN expressions
74 with multiple logic operators:
75
76  1) 20,10,GT,10,20,IF  eval is 20,10,GT = 1     result is 1,10,20,IF
77
78 read the eval as pop "20 is greater than 10" so push 1
79
80  2) 1,10,20,IF         eval is 1,10,20,IF = 10  result is 10
81
82 read pop "if 1 then 10 else 20" so push 10.  Only 10 is left so
83 10 is the answer.
84
85 Let's read a complex RPN expression that also has the traditional
86 multiplication operator:
87
88  1) 128,8,*,7000,GT,7000,128,8,*,IF  eval 128,8,*       result is 1024
89  2) 1024,7000,GT,7000,128,8,*,IF     eval 1024,7000,GT  result is 0
90  3) 0,128,8,*,IF                     eval 128,8,*       result is 1024
91  4) 0,7000,1024,IF                                      result is 1024
92
93
94 Now let's go back to the first example of multiple logic operators,
95 but replace the value 20 with the variable "input":
96
97  1) input,10,GT,10,input,IF  eval is input,10,GT  ( lets call this A )
98
99 Read eval as "if input > 10 then true" and replace "input,10,GT"
100 with "A":
101
102  2) A,10,input,IF            eval is A,10,input,IF
103
104 read "if A then 10 else input".  Now replace A with it's verbose
105 description againg and--voila!--you have a easily readable description
106 of the expression:
107
108  if input > 10 then 10 else input
109
110 Finally, let's go back to the first most complex example and replace
111 the value 128 with "input":
112
113  1) input,8,*,7000,GT,7000,input,8,*,IF  eval input,8,*     result is A
114
115 where A is "input * 8"
116
117  2) A,7000,GT,7000,input,8,*,IF          eval is A,7000,GT  result is B
118
119 where B is "if ((input * 8) > 7000) then true"
120
121  3) B,7000,input,8,*,IF                  eval is input,8,*  result is C
122
123 where C is "input * 8"
124
125  4) B,7000,C,IF
126
127 At last we have a readable decoding of the complex RPN expression with
128 a variable:
129
130  if ((input * 8) > 7000) then 7000 else (input * 8)
131
132 =head1 Exercises
133
134 Exercise 1:
135
136 Compute "3,2,*,1,+ and "3,2,1,+,*" by hand.  Rewrite them in
137 traditional notation.  Explain why they have different answers.
138
139 Answer 1:
140
141     3*2+1 = 7 and 3*(2+1) = 9.  These expressions have
142     different answers because the altering of the plus and
143     times operators alter the order of their evaluation.
144
145
146 Exercise 2:
147
148 One may be tempted to shorten the expression
149
150  input,8,*,56000,GT,56000,input,*,8,IF
151
152 by removing the redundant use of "input,8,*" like so:
153
154  input,56000,GT,56000,input,IF,8,*
155
156 Use traditional notation to show these expressions are not the same.
157 Write an expression that's equivalent to the first expression, but
158 uses the LE and DIV operators.
159
160 Answer 2:
161
162     if (input <= 56000/8 ) { input*8 } else { 56000 }
163     input,56000,8,DIV,LT,input,8,*,56000,IF
164
165
166 Exercise 3:
167
168 Briefly explain why traditional mathematic notation requires the
169 use of parentheses.  Explain why RPN notation does not require
170 the use of parentheses.
171
172 Answer 3:
173
174     Traditional mathematic expressions are evaluated by
175     doing multiplication and division first, then addition and
176     subtraction.  Parentheses are used to force the evaluation of
177     addition before multiplication (etc).  RPN does not require
178     parentheses because the ordering of objects on the stack
179     can force the evaluation of addition before multiplication.
180
181
182 Exercise 4:
183
184 Explain why it was desirable for the RRDtool developers to implement
185 RPN notation instead of traditional mathematical notation.
186
187 Answer 4:
188
189     The algorithm that implements traditional mathematical
190     notation is more complex then algorithm used for RPN.
191     So implementing RPN allowed Tobias Oetiker to write less
192     code!  (The code is also less complex and therefore less
193     likely to have bugs.)
194
195
196 =head1 AUTHOR
197
198 Steve Rader E<lt>rader@wiscnet.netE<gt>