Ausgeschriebene Zahlen teilweise ersetzt.
[diplomarbeit.git] / diplomarbeit.tex
index 3caa170..6a77ae3 100644 (file)
@@ -155,12 +155,12 @@ Ausgänge eines Komparators mit Eingängen weiterer Komparatoren verbunden sind,
 erhält man ein {\em Komparatornetzwerk}.
 
 \begin{figure}
-\begin{center}
-\input{images/einfaches_komparatornetzwerk.tex}
-\end{center}
-\caption{Einfaches Komparatornetzwerk mit vier Ein- beziehungsweise Ausgängen, bestehend
-aus 5~Komparatoren.}
-\label{fig:einfaches_komparatornetzwerk}
+  \begin{center}
+    \input{images/einfaches_komparatornetzwerk.tex}
+  \end{center}
+  \caption{Einfaches Komparatornetzwerk mit 4~Ein- beziehungsweise Ausgängen,
+    bestehend aus 5~Komparatoren.}
+  \label{fig:einfaches_komparatornetzwerk}
 \end{figure}
 
 Abbildung~\ref{fig:einfaches_komparatornetzwerk} zeigt ein einfaches
@@ -205,9 +205,9 @@ zerstört.
   \begin{center}
     \input{images/09-e2-c24-allbut1.tex}
   \end{center}
-  \caption{Ein \emph{Komparatornetzwerk} mit neun Eingängen und
-  24~Komparatoren, die in 8~Schichten angeordnet sind. Das Netzwerk sortiert
-  alle Eingaben, bei denen das Minimum nicht auf dem mittleren Eingang liegt.}
+  \caption{Ein \emph{Komparatornetzwerk} mit 9~Eingängen und 24~Komparatoren,
+  die in 8~Schichten angeordnet sind. Das Netzwerk sortiert alle Eingaben, bei
+  denen das Minimum nicht auf dem mittleren Eingang liegt.}
   \label{fig:09-e2-c24-allbut1}
 \end{figure}
 Zu beweisen, dass ein gegebenes Komparatornetzwerk die Sortiereigenschaft {\em
@@ -947,16 +947,16 @@ Verbesserungen der Effizienz (die Anzahl der benötigten Komparatoren),
 beziehungsweise der Geschwindigkeit (die Anzahl der Schichten) eines „kleinen“
 Sortiernetzwerks, übertragen sich direkt auf das resultierende Gesamtnetzwerk.
 Das \emph{Odd-Even-Mergesort}-Netzwerk $\operatorname{OES}(9)$ benötigt
-beispielsweise 26~Komparatoren, die in neun Schichten angeordnet sind. Es sind
-allerdings Sortiernetzwerke mit neun Eingängen bekannt, die lediglich
-25~Komparatoren in sieben Schichten benötigen. Kombiniert man zwei dieser
-Netzwerke mit dem \emph{Odd-Even}-Mischer erhält man ein Sortiernetzwerk mit
-18~Eingängen, das 80~Komparatoren in 11~Schichten benötigt.
-$\operatorname{OES}(18)$ benötigt 82~Komparatoren in 13~Schichten. Damit ist
-das resultierende Netzwerk genauso schnell wie das Sortiernetzwerk mit
-18~Eingängen, das \textit{Sherenaz~W. Al-Haj Baddar} und \textit{Kenneth~E.
-Batcher} in ihrer Arbeit „An 11-Step Sorting Network for
-18~Elements“~\cite{BB2009} vorstellen, benötigt aber 6~Komparatoren weniger.
+beispielsweise 26~Komparatoren, die in 9~Schichten angeordnet sind. Es sind
+allerdings Sortiernetzwerke mit 9~Eingängen bekannt, die lediglich
+25~Komparatoren in 7~Schichten benötigen. Wenn zwei dieser Netzwerke mit dem
+\emph{Odd-Even}-Mischer kombiniert werden, entsteht ein 18-Sortiernetzwerk,
+das aus 80~Komparatoren in 11~Schichten besteht. Damit ist das resultierende
+Netzwerk genauso schnell wie das Sortiernetzwerk mit 18~Eingängen, das
+\textit{Sherenaz~W. Al-Haj Baddar} und \textit{Kenneth~E. Batcher} in ihrer
+Arbeit „An 11-Step Sorting Network for 18~Elements“~\cite{BB2009} vorstellen,
+benötigt aber 6~Komparatoren weniger. $\operatorname{OES}(18)$ benötigt
+82~Komparatoren in 13~Schichten.
 
 Das Zusammenfassen von zwei Sortiernetzwerken durch Hintereinanderausführung
 ist nicht sinnvoll: Da die Ausgabe des ersten Sortiernetzwerks bereits
@@ -1795,16 +1795,14 @@ zusammenhängt.
 %\end{figure}
 
 \newpage
-\section{Der \textsc{SN-Evolution-Cut}-Algorithmus}
+\section[\textsc{SN-Evolution-Cut}]{Der \textsc{SN-Evolution-Cut}-Algorithmus}
 \label{sect:sn-evolution-cut}
 
 Das Programm \textsc{SN-Evolution-Cut} implementiert einen evolutionären
 Algorithmus, der zu einem gegebenen Sortiernetzwerk und einer gewünschten
 Leitungszahl ein Schnittmuster sucht, dass ein Sortiernetzwerk mit einer
 möglichst geringen Anzahl von Komparatoren und Schichten ergibt. Zur Bewertung
-von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}. Mit diesem
-Algorithmus wurden zu einer Reihe von „interessanten“ Netzwerken möglichst
-gute Schnittmuster gesucht.
+von Sortiernetzwerken siehe auch Abschnitt~\ref{sect:bewertung}.
 
 Der \textsc{SN-Evolution-Cut}-Algorithmus verwendet \emph{Schnittmuster}, die
 in Abschnitt~\ref{sect:anzahl_schnittmuster} definiert wurden, als Individuen.
@@ -1822,6 +1820,17 @@ Die Mutation vertauscht entweder die Werte von zwei zufälligen Positionen oder
 multipliziert den Wert einer Leitung mit $-1$, um die Schnittrichtung zu
 invertieren.
 
+Die Eingabe für \textsc{SN-Evolution-Cut} ist ein $n$-Sortiernetzwerk und eine
+Zahl $k$, $1 \leqq k < n$, die angibt wie viele Leitungen entfernt werden
+sollen. Der Rückgabewert des \textsc{SN-Evolution-Cut}-Algorithmus ist ein
+\emph{$k$-Schnittmuster}. Wird das Schnittmuster auf das Sortiernetzwerk, mit
+dem der Algorithmus gestartet wurde, angewendet, entsteht ein möglichst
+schnelles und effizientes Sortiernetzwerk mit $m = n - k$ Leitungen. Da mit
+dem Eingabe-Netzwerk und dem zurückgegebenen $k$-Schnittmuster das
+$m$-Sortiernetzwerk eindeutig bestimmt ist, werden im Folgenden sowohl das
+$k$-Schnittmuster als auch das $m$-Sortiernetzwerk als Ausgabe von
+\textsc{SN-Evolution-Cut} bezeichnet.
+
 \subsection[Bitones Mergesort-Netzwerk]{Versuche mit dem bitonen Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:bs}
 
@@ -1928,11 +1937,11 @@ Sortiernetzwerk mit 31~Komparatoren gefunden.
 Bei einigen Werten für die Ziel-Leitungsanzahl $m$ kann der
 \textsc{SN-Evolution-Cut}-Algorithmus Ergebnisse erzielen, die schneller als
 das entsprechende \emph{bitone Mergesort}-Netzwerk \bs{m} sind. In
-Tabelle~\ref{tbl:ec-bs-speed} sind die Schichten, die die Ergebnisse von
-\textsc{SN-Evolution-Cut} benötigen, um die Eingabe zu sortieren, aufgelistet.
-Jede Zeile enthält die Ergebnisse für ein Eingabenetzwerk \bs{n}, jede Spalte
-enthält die Ergebnisse für eine Ziel-Leitungszahl $m = n-k$. Die Zellen
-enthalten die Anzahl der Schichten des jeweiligen Ergebnis-Netzwerks.
+Tabelle~\ref{tbl:ec-bs-speed} ist die Anzahl der Schichten, die die Ergebnisse
+von \textsc{SN-Evolution-Cut} benötigen, um die Eingabe zu sortieren,
+aufgelistet. Jede Zeile enthält die Ergebnisse für ein Eingabenetzwerk \bs{n},
+jede Spalte enthält die Ergebnisse für eine Ziel-Leitungszahl $m = n-k$. Die
+Zellen enthalten die Anzahl der Schichten des jeweiligen Ergebnis-Netzwerks.
 
 \begin{table}
   \begin{center}
@@ -2165,17 +2174,176 @@ $\operatorname{OET}(n-k)$-Netzwerk.
 \subsection[Odd-Even-Mergesort-Netzwerk]{Versuche mit dem Odd-Even-Mergesort-Netzwerk}
 \label{sect:sn-evolution-cut:oes}
 
+Wird \textsc{SN-Evolution-Cut} mit dem \emph{Odd-Even-Mergesort}-Netzwerk
+\oes{n} gestartet, gibt der Algorithmus meist Sortiernetzwerke zurück, die
+genauso effizient und schnell wie das entsprechende
+\emph{Odd-Even-Mergesort}-Netzwerk \oes{m} sind. Die Effizienz der
+Sortiernetzwerke, die mit Schnittmustern von \textsc{SN-Evolution-Cut} aus
+\oes{n} entstehen können, zeigt Tabelle~\ref{tbl:ec-oes-efficiency}
+tabellarisch.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &  19 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &  19 &  26 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &  19 &  26 &  31 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &  19 &  26 &  31 &  37 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &  19 &  26 &  31 &  37 &  41 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &  19 &  26 &  31 &  37 &  41 &  48 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &  19 &  26 &  31 &  37 &  41 &  48 &  53 &     &     &     &     &     &     &     &     &     \\
+ 16 &  19 &  26 &  31 &  37 &  41 &  48 &  53 &  59 &     &     &     &     &     &     &     &     \\
+ 17 &  19 &  26 &  31 &  38 &  41 &  48 &  53 &  59 &  63 &     &     &     &     &     &     &     \\
+ 18 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &     &     &     &     &     &     \\
+ 19 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &     &     &     &     &     \\
+ 20 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &     &     &     &     \\
+ 21 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 &     &     &     \\
+ 22 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 &     &     \\
+ 23 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 &     \\
+ 24 &  19 &  26 &  31 &  38 &  43 &  48 &  53 &  59 &  63 &  74 &  82 &  91 &  97 & 107 & 114 & 122 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Komparatoren der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Odd-Even-Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \oes{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
+  \label{tbl:ec-oes-efficiency}
+\end{table}
+
+\begin{figure}
+  \centering
+  \subfigure[11-Sortiernetzwerk aus 38~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \oes{17} erzeugt.]{\input{images/11-ec-from-oes17-fast.tex}\label{fig:11-ec-from-oes17-fast}}
+  \subfigure[12-Sortiernetzwerk aus 43~Komparatoren in 9~Schichten. Das
+  Netzwerk wurde von \textsc{SN-Evolution-Cut} aus \oes{18} erzeugt.]{\input{images/12-ec-from-oes18-fast.tex}\label{fig:12-ec-from-oes18-fast}}
+  \caption{Für einige Ziel-Leitungszahlen, unter anderem $m = 10$ und $m =
+  11$, kann der \textsc{SN-Evolution-Cut}-Algorithmus Sortiernetzwerke
+  erzeugen, die \emph{schneller} aber weniger \emph{effizient} als \oes{m}
+  sind.}
+  \label{fig:ec-oes-fast_networks}
+\end{figure}
+
+Die Bewertungsfunktion, die \textsc{SN-Evolution-Cut} verwendet, bevorzugt
+schnelle Sortiernetzwerke. Dadurch kann es vorkommen, dass ein
+$m$-Sortiernetzwerk, das durch ein von \textsc{SN-Evolution-Cut} ausgegebenes
+Schnittmuster entsteht, schneller als \oes{m} ist. Diese Geschwindigkeit
+war allerdings in allen beobachteten Fällen nur dann möglich, wenn
+zusätzliche Komparatoren in Kauf genommen wurden. In den
+Tabellen~\ref{tbl:ec-oes-efficiency} und~\ref{tbl:ec-oes-speed} ist dieser
+Fall für $m = 11$ und $k \geqq 6$, beziehungsweise $m = 12$ und $k \geqq 6$ zu
+beobachten. Die entsprechenden schnellen Sortiernetzwerke sind in
+Abbildung~\ref{fig:ec-oes-fast_networks} dargestellt.
+
+Wie beim \emph{bitonen Mergesort}-Netzwerk reicht auch beim
+\emph{Odd-Even-Mergesort}-Netzwerk ein einziger Schnitt nicht aus, um die
+Geschwindigkeit gegenüber \oes{m} zu verbessern. Bei $m = 11$ und $m = 12$ war
+jeweils mindestens ein 6-Schnittmuster notwendig, um eine höhere
+Geschwindigkeit zu erreichen.
+
+In Tabelle~\ref{tbl:ec-oes-19} sind die Ergebnisse von
+\textsc{SN-Evolution-Cut} für \oes{n}, $n = 20$ und $m = 19$ ($k = 1 \dots
+19$) aufgelistet. Mit $k = 10$ wird das erste mal ein schnelles
+19-Sortiernetzwerk mit 13~Schichten ausgegeben. Mit $k \geqq 11$ sind die
+resultierenden Netzwerke mit 93~Komparatoren effizienter als das Ergebnis mit
+$k = 10$, das 95~Komparatoren benötigt. Das Ergebnis, das auf Basis des
+\emph{bitonen Mergesort}-Netzwerks erreicht wurde (92~Komparatoren in
+13~Schichten, siehe Tabelle~\ref{tbl:ec-bs-19}), wird nicht erreicht.
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+\begin{tabular}{|r|rrrrrrrrrrrrrrrr|}
+\hline
+    &   8 &   9 &  10 &  11 &  12 &  13 &  14 &  15 &  16 &  17 &  18 &  19 &  20 &  21 &  22 &  23 \\
+\hline
+  9 &   6 &     &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 10 &   6 &   8 &     &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 11 &   6 &   8 &   9 &     &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 12 &   6 &   8 &   9 &  10 &     &     &     &     &     &     &     &     &     &     &     &     \\
+ 13 &   6 &   8 &   9 &  10 &  10 &     &     &     &     &     &     &     &     &     &     &     \\
+ 14 &   6 &   8 &   9 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     &     \\
+ 15 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     &     \\
+ 16 &   6 &   8 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     &     \\
+ 17 &   6 &   8 &   9 &   9 &  10 &  10 &  10 &  10 &  10 &     &     &     &     &     &     &     \\
+ 18 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &     &     &     &     &     &     \\
+ 19 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &     &     &     &     &     \\
+ 20 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &     &     &     &     \\
+ 21 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &     &     &     \\
+ 22 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &     &     \\
+ 23 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &     \\
+ 24 &   6 &   8 &   9 &   9 &   9 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\oes{m}& 6 &  8 &   9 &  10 &  10 &  10 &  10 &  10 &  10 &  12 &  13 &  14 &  14 &  15 &  15 &  15 \\
+\hline
+\end{tabular}
+  \end{center}
+  \caption{Anzahl der Schichten der Ergebnisse von
+    \textsc{SN-Evolution-Cut} mit verschiedenen Größen des
+    \emph{Odd-Even-Mergesort}-Netzwerks und unterschiedlichen Werten für~$k$.
+    Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \oes{n} an, jede
+    Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
+    Ausgabenetzwerks.}
+  \label{tbl:ec-oes-speed}
+\end{table}
+
+\begin{table}
+  \begin{center}
+    \rowcolors{2}{black!5}{}
+    \begin{tabular}{|r|r|r|}
+      \hline
+      $n$ & Komp. & Schichten \\
+      \hline
+      20  &  91 & 14 \\
+      21  &  91 & 14 \\
+      22  &  91 & 14 \\
+      23  &  91 & 14 \\
+      24  &  91 & 14 \\
+      25  &  91 & 14 \\
+      26  &  91 & 14 \\
+      27  &  91 & 14 \\
+      28  &  91 & 14 \\
+      29  &  95 & 13 \\
+      30  &  93 & 13 \\
+      31  &  93 & 13 \\
+      32  &  93 & 13 \\
+      33  &  93 & 13 \\
+      34  &  93 & 13 \\
+      35  &  93 & 13 \\
+      36  &  93 & 13 \\
+      37  &  93 & 13 \\
+      38  &  93 & 13 \\
+      \hline
+ \bs{19}  &  98 & 14 \\
+ \oes{19} &  91 & 14 \\
+      \hline
+    \end{tabular}
+  \end{center}
+  \caption{Komparatoren und Schichten von Sortiernetzwerken, die von
+    \textsc{SN-Evolution-Cut} mit \oes{n} und $k = n - 19$ ermittelt wurden. Erst mit $k = 10$
+    ist es möglich gegenüber \oes{19} eine Schicht einzusparen. Dafür ist die
+    Effizienz von 91~Komparatoren nicht mehr erreichbar.}
+  \label{tbl:ec-oes-19}
+\end{table}
+
 In Abschnitt~\ref{sect:anzahl_schnittmuster} wurde bereits untersucht, wie
-viele \emph{unterschiedliche} Schnittmuster die konstruktiven Sortiernetzwerke
-$\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und $\operatorname{PS}(32)$
-besitzen. Eines der Ergebnisse war, dass von diesen Sortiernetzwerken das
-\emph{Odd-Even-Mergesort}-Netzwerk die wenigsten unterschiedlichen
-16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen. Entsprechend ist es
-wenig verwunderlich, dass \textsc{SN-Evolution-Cut} gestartet mit
-$\operatorname{OES}(32)$ sehr schnell\footnote{Auf dem Computer, auf dem diese
-Arbeit geschrieben wurde, dauerte es in den meisten Fällen weniger als eine
-Sekunde bis ein entsprechendes Schnittmuster gefunden wurde.} ein gutes
-16-Schnittmuster findet.
+viele \emph{unterschiedliche} 16-Schnittmuster die konstruierten
+Sortiernetzwerke $\operatorname{OES}(32)$, $\operatorname{BS}(32)$ und
+$\operatorname{PS}(32)$ besitzen. Eines der Ergebnisse war, dass von diesen
+Sortiernetzwerken das \emph{Odd-Even-Mergesort}-Netzwerk die wenigsten
+unterschiedlichen 16-Schnittmuster besitzt -- nur etwa $5,2$~Millionen.
+Entsprechend ist es wenig verwunderlich, dass \textsc{SN-Evolution-Cut}
+gestartet mit $\operatorname{OES}(32)$ sehr schnell\footnote{Ein
+entsprechendes Ergebnis wird meist nach 20.000 bis 100.000 Iterationen
+geliefert. Bei dieser Problemgröße erreicht die Implementierung (siehe
+Abschnitt~\ref{sect:implementierung}) etwa 20.000 Iterationen pro Sekunde auf
+derzeitigen Computern.} ein gutes 16-Schnittmuster findet.
 
 Eines der 16-Schnittmuster für \oes{32}, die ein Sortiernetzwerk erzeugen, das
 bezüglich Effizienz und Geschwindigkeit identisch ist zu \oes{16}, ist
@@ -2189,8 +2357,10 @@ Netzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32} zu sehen.
     \input{images/16-ec-from-oes32-cut.tex}
   \end{center}
   \caption{Visualisierung eines 16-Schnittmusters, das auf
-  $\operatorname{OES}(32)$ angewendet wieder ein schnelles und effizientes
-  Sortiernetzwerk ergibt.}
+  $\operatorname{OES}(32)$ angewendet ein Sortiernetzwerk ergibt, das
+  bezüglich Geschwindigkeit und Effizienz identisch zu \oes{16} ist. Das
+  resultierende Sortiernetzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32}
+  dargestellt.}
   \label{fig:16-ec-from-oes32-cut}
 \end{figure}
 
@@ -2199,9 +2369,10 @@ Netzwerk ist in Abbildung~\ref{fig:16-ec-from-oes32} zu sehen.
     \input{images/16-ec-from-oes32.tex}
   \end{center}
   \caption{16-Sortiernetzwerk mit 63~Komparatoren in 10~Schichten. 
-    Das Netzwerk wurde von dem Algorithmus \textsc{SN-Evolution-Cut} aus dem
-    \emph{Odd-Even-Mergesort}-Netzwerk $\operatorname{OES}(32)$ durch
-    16~Schnitte erzeugt.}
+    Das Netzwerk wurde aus dem \emph{Odd-Even-Mergesort}-Netzwerk \oes{32} mit
+    einem 16-Schnittmuster erzeugt, das von \textsc{SN-Evolution-Cut}
+    berechnet wurde. Das Schnittmuster ist in
+    Abbildung~\ref{fig:16-ec-from-oes32-cut} dargestellt.}
   \label{fig:16-ec-from-oes32}
 \end{figure}
 
@@ -2353,7 +2524,7 @@ wie und warum es jede beliebige Eingabe sortiert.
     Jede Zeile gibt die Ergebnisse für ein Eingabenetzwerk \ps{n} an, jede
     Spalte enthält die Ergebnisse für $m=n-k$, die Anzahl der Leitungen des
     Ausgabenetzwerks.}
-  \label{tbl:ec-ps-fast}
+  \label{tbl:ec-ps-speed}
 \end{table}
 
 Das \emph{Pairwise-Sorting-Netzwerk} $\operatorname{PS}(n)$, das \textit{Ian