Verwende "d" als Exponent von Zweierpotenzen.
[diplomarbeit.git] / diplomarbeit.tex
index 0e86f73..2e92d46 100644 (file)
@@ -292,22 +292,23 @@ für einen Lauf benötigt.
 
 Viele {\em kombinatorische Optimierungsprobleme} sind schwer zu lösen -- die
 entsprechenden Entscheidungsprobleme liegen oft in der Komplexitätsklasse
-$\mathcal{NP}$. Das heißt, dass keine Verfahren bekannt sind, die diese
-Probleme effizient exakt lösen. Sollte sich herausstellen, dass diese Probleme
-außerhalb der Komplexitätsklasse~$\mathcal{P}$ liegen, wäre eine Konsequenz,
-dass es effiziente exakte Algorithmen für diese Probleme nicht gibt. Falls
-sich hingegen herausstellt, dass diese Probleme neben $\mathcal{NP}$ auch in
-der Komplexitätsklasse~\textit{P} liegen, gibt es effiziente Algorithmen. Es
-ist jedoch wahrscheinlich, dass die Zeitkonstanten solcher Algorithmen sehr
-groß sein würden, so dass der praktische Nutzen fraglich bleibt.
-
-Aus diesem Grund besteht die Notwendigkeit einen Kompromiss einzugehen: Statt
-die \emph{optimale Lösung}, beziehungsweise eine der \emph{optimalen
-Lösungen}, als einzige Ausgabe des Algorithmus zuzulassen, wird eine
-"`möglichst gute"' Lösung ausgegeben. Viele dieser Optimierungsalgorithmen
-orientieren sich an Vorgängen in der Natur. Beispielsweise imitieren die
-„Ameisenalgorithmen“ das Verhalten von Ameisen auf der Futtersuche, um kurze
-Rundreisen auf Graphen zu berechnen.
+$\mathcal{NP}$-vollständig. Das heißt, dass keine Verfahren bekannt sind, die
+diese Probleme effizient exakt lösen. Sollte sich herausstellen, dass diese
+Probleme außerhalb der Komplexitätsklasse~$\mathcal{P}$ liegen, wäre eine
+Konsequenz, dass es für diese Probleme keine effizienten exakten Algorithmen
+gibt. Stellt sich hingegen heraus, dass diese Probleme neben
+$\mathcal{NP}$-vollständig auch in der Komplexitätsklasse~\textit{P} liegen,
+gibt es effiziente Algorithmen. Es ist jedoch wahrscheinlich, dass die
+Zeitkonstanten solcher Algorithmen sehr groß wären, so dass der praktische
+Nutzen fraglich bleibt.
+
+Aus diesem Grund besteht die Notwendigkeit, einen Kompromiss einzugehen: Statt
+die \emph{optimale Lösung}, beziehungsweise eine der \emph{optimalen Lösungen}
+als einzige Ausgabe des Algorithmus zuzulassen, wird eine "`möglichst gute"'
+Lösung ausgegeben. Dafür verringert sich die Laufzeit des Algorithmus. Viele
+dieser Optimierungsalgorithmen orientieren sich an Vorgängen in der Natur.
+Beispielsweise imitieren die „Ameisenalgorithmen“ das Verhalten von Ameisen
+auf der Futtersuche, um kurze Rundreisen auf Graphen zu berechnen.
 
 Bei {\em Evolutionären Algorithmen} stand die Evolution Pate. Die Grundidee
 ist, bekannte Lösungen zu neuen -- unter Umständen besseren -- Lösungen zu
@@ -427,7 +428,7 @@ in dieser Arbeit trotzdem verwendet.}, bilden die Grundlage für die
 beschriebenen evolutionären Algorithmen beziehungsweise dienen als initiale
 Eingabe. Im Folgenden werden daher vier Konstruktionsverfahren vorgestellt.
 
-% \todo{Drei oder vier Verfahren?}
+\todo{Drei oder vier Verfahren? Sprich: Mit oder ohne Pairwise Sorting.}
 
 \subsection{Das Odd-Even-Transpositionsort-Netzwerk}
 \label{sect:odd_even_transpositionsort}
@@ -495,7 +496,7 @@ sortierte Listen zusammenfügen (Englisch: \textit{to~merge}) kann. Dieser
 verleiht dem Sortiernetzwerk seinen Namen.
 
 Da das Sortiernetzwerk rekursiv definiert ist, betrachten wir hier nur die
-Instanzen des Netzwerks, deren Leitungszahl $n = 2^t$ eine Zweierpotenz ist.
+Instanzen des Netzwerks, deren Leitungszahl $n = 2^d$ eine Zweierpotenz ist.
 Es ist jedoch möglich, das Sortiernetzwerk für beliebige~$n$ zu erzeugen.
 
 \subsubsection{Der bitone Mischer}\label{sect:der_bitone_mischer}
@@ -775,7 +776,7 @@ Leider ist es schwierig, diese allgemeine Formel in einer geschlossenen Form
 anzugeben. Aus der Anzahl der Rekursionsschritte ist jedoch leicht erkennbar,
 dass $K(n,m)$ in $\Theta(N \log (N))$ enthalten ist.
 
-Für den wichtigen Spezialfall, dass $n = m = 2^{t-1}$ beträgt, lässt sich die
+Für den wichtigen Spezialfall, dass $n = m = 2^{d-1}$ beträgt, lässt sich die
 Anzahl der Komparatoren im Vergleich zum \emph{bitonen Mischer} angeben: Der
 erste Rekursionsschritt der OEM-Konstruktion fügt
 $\left\lfloor \frac{1}{2} (m + n - 1) \right\rfloor = \frac{N}{2} - 1$
@@ -789,9 +790,9 @@ einschließlich $\operatorname{OEM}(2, 2)$, von denen es $2, 4, \dots,
 \end{displaymath}
 Komparatoren eingespart. Damit ergibt sich
 \begin{displaymath}
-  K\left(n = 2^{t-1}, n = 2^{t-1}\right) = \frac{1}{2} N \log(N) - \frac{N}{2} + 1
+  K\left(n = 2^{d-1}, n = 2^{d-1}\right) = \frac{1}{2} N \log(N) - \frac{N}{2} + 1
 \end{displaymath}
-für die Anzahl der Komparatoren, die von $\operatorname{OEM}(N = 2^t)$
+für die Anzahl der Komparatoren, die von $\operatorname{OEM}(N = 2^d)$
 benötigt werden.
 
 \subsubsection{Das Odd-Even-Mergesort-Netzwerk}
@@ -839,11 +840,11 @@ geschlossene Darstellung von $k(n)$ ebenfalls nicht ohne weiteres möglich. Es
 ist allerdings bekannt, dass $k(n)$ in $\Theta\left(n \left(\log
 (n)\right)^2\right)$ enthalten ist.
 
-Für den wichtigen Spezialfall, dass $n = 2^t$ eine Zweierpotenz ist, kann die
+Für den wichtigen Spezialfall, dass $n = 2^d$ eine Zweierpotenz ist, kann die
 Anzahl der Komparatoren wieder explizit angegeben werden. \textit{Kenneth
 Batcher} zeigt in~\cite{B1968}, dass in diesem Fall
 \begin{displaymath}
-  k(n = 2^t) = \frac{1}{4} n \left(\log (n)\right)^2 - \frac{1}{4}n\log(n) + n - 1
+  k(n = 2^d) = \frac{1}{4} n \left(\log (n)\right)^2 - \frac{1}{4}n\log(n) + n - 1
 \end{displaymath}
 gilt.